SOLUTION: Given tan(A) = {{{ 2 }}} and A is found in Quadrant 1, find sin(2A).
A.) {{{ 0 }}}
B.) {{{ 1 }}}
C.) {{{ 1/2 }}}
D.) {{{ 4/5 }}}
Algebra ->
Test
-> SOLUTION: Given tan(A) = {{{ 2 }}} and A is found in Quadrant 1, find sin(2A).
A.) {{{ 0 }}}
B.) {{{ 1 }}}
C.) {{{ 1/2 }}}
D.) {{{ 4/5 }}}
Log On
You can put this solution on YOUR website! Given tan(A) = 2 and A is found in Quadrant 1, find sin(2A).
By definition tan = y/x; so y = 2 and x = 1 in QI
----
r = sqrt[x^2+y^2] = sqrt[2^2+1^2] = sqrt(5)
----
sin(A) = y/r = 2/sqrt(5)
cos(A) = x/r = 1/sqrt(5)
----
Ans:: sin(2A) = 2*sin(A)cos(A) = 2*2/sqrt(5)*1/sqrt(5) = 4/5
--------------
Cheers,
Stan H.
---------------
A.)
B.)
C.)
D.)