SOLUTION: for parallelogram LMNO, If m < L = 4x-25 and m < N = 3x+18,find m < M 33 147 137 43

Algebra ->  Parallelograms -> SOLUTION: for parallelogram LMNO, If m < L = 4x-25 and m < N = 3x+18,find m < M 33 147 137 43       Log On


   



Question 1063568: for parallelogram LMNO, If m < L = 4x-25 and m < N = 3x+18,find m < M

33
147
137
43

Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
Angle L and angle N are opposite angles. With any parallelogram, opposite angles are congruent.

angle L = angle N
4x-25 = 3x+18
4x-25+25 = 3x+18+25
4x = 3x+43
4x-3x = 3x+43-3x
x = 43

Now that we know x = 43, we can figure out what angle L and what angle N are equal to (in terms of degrees)

angle L = 4x-25
angle L = 4*43-25
angle L = 172-25
angle L = 147 degrees

angle N = 3x+18
angle N = 3*43+18
angle N = 129+18
angle N = 147 degrees

---------------------------------------------------------

Angle M is adjacent to angle L. Adjacent angles in parallelograms are supplementary. This means that they add to 180 degrees

(angle M) + (angle L) = 180
(angle M) + (147) = 180
angle M + 147-147 = 180-147
angle M = 33 degrees
---------------------------------------------------------

Final Answer: choice A) 33 degrees