SOLUTION: Prove that Tan^ 2 theta / ( Sec theta -1 )^2 = 1+ cos theta/ 1- cos theta

Algebra ->  Trigonometry-basics -> SOLUTION: Prove that Tan^ 2 theta / ( Sec theta -1 )^2 = 1+ cos theta/ 1- cos theta      Log On


   



Question 1063138: Prove that Tan^ 2 theta / ( Sec theta -1 )^2 = 1+ cos theta/ 1- cos theta
Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
Prove that Tan^ 2 theta / ( Sec theta -1 )^2 = 1+ cos theta/ 1- cos theta
-----------
tan^2/(sec^2 - 2sec + 1) =? (1 + cos)/(1 - cos)
tan^2 =? (sec^2 - 2sec + 1)*(1 + cos)/(1 - cos)
Multiply by cos^2
sin^2 =? (1 - 2cos + cos^2)*(1 + cos)/(1 - cos)
sin^2 =? (1 - cos)^2*(1 + cos)/(1 - cos)
1 - cos^2 =? (1 - cos)^2*(1 + cos)/(1 - cos)
1 =? (1 + cos)/(1 - cos)
1 - cos <> 1 + cos
It doesn't.