SOLUTION: Please help me solve this 3 variable system: x+y+z=8 x-y/3+(4/3)z=7 3z-3y-2x=7

Algebra ->  Systems-of-equations -> SOLUTION: Please help me solve this 3 variable system: x+y+z=8 x-y/3+(4/3)z=7 3z-3y-2x=7       Log On


   



Question 1058261: Please help me solve this 3 variable system:
x+y+z=8
x-y/3+(4/3)z=7
3z-3y-2x=7

Found 2 solutions by josmiceli, MathTherapy:
Answer by josmiceli(19441) About Me  (Show Source):
You can put this solution on YOUR website!
(1) +x+%2B+y+%2B+z+=+8+
---------------------
(2) +x+-+y%2F3+%2B+%284%2F3%29%2Az+=+7+
(2) +3x+-+y+%2B+4z+=+21+
----------------------------
(3) +-2x+-+3y+%2B+3z+=+7+
----------------------------
Multiply both sides of (1) by +2+
and add (1) and (3)
(1) +2x+%2B+2y+%2B+2z+=+16+
(3) +-2x+-+3y+%2B+3z+=+7+
--------------------------
+-y+%2B+5z+=+23+
Subtract (2) from this result
---------------------------
+-y+%2B+5z+=+23+
(2) +-3x+%2B+y+-+4z+=+-21+
--------------------------
+-3x+%2B+z+=+2+
------------------
Now I can say:
+y+=+5z+-+23+
and
+3x+=+z+-+2+
+x+=+%281%2F3%29%2Az+-+2%2F3+
----------------------
Plug these results into (1)
(1) +x+%2B+y+%2B+z+=+8+
(1) +%281%2F3%29%2Az+-+2%2F3+%2B+5z+-+23+%2B+z+=+8+
(1) +%2819%2F3%29%2Az+=+31+%2B+2%2F3+
(1) +19z+=+93+%2B+2+
(1) +z+=+95%2F19+
(1) +z+=+5+
---------------------
+-3x+%2B+z+=+2+
+-3x+%2B+5+=+2+
+-3x+=+-3+
+x+=+1+
-------------------------
+-y+%2B+5z+=+23+
+-y+%2B+5%2A5+=+23+
+-y+%2B+25+=+23+
+-y+=+-2+
+y+=+2+
---------------
The solutions are:
x = 1
y = 2
z = 5
-----------------
check:
(1) +x+%2B+y+%2B+z+=+8+
(1) +1+%2B+2+%2B+5+=+8+
{1) +8+=+8+
OK
You can check (2) and (3)

Answer by MathTherapy(10552) About Me  (Show Source):
You can put this solution on YOUR website!

Please help me solve this 3 variable system:
x+y+z=8
x-y/3+(4/3)z=7
3z-3y-2x=7
x + y + z = 8 -------- eq (i)
x+-+y%2F3+%2B%284%2F3%29z+=+7 ------ eq (ii)
3z - 3y - 2x = 7_____- 2x - 3y + 3z = 7 ----- eq (iii)
3x + 3y + 3z = 24 ---- Multiplying eq (i) by 3 ------- eq (iv)
3x - y + 4z = 21 ----- Multiplying eq (ii) by 3 ------ eq (v)
x + 6z = 31 ------ Adding eqs (iii) & (iv) ------- eq (vi)
4x + 5z = 29 ------ Adding eqs (i) & (v) ---------- eq (vii)
- 4x - 24z = - 124 --- Multiplying eq (vi) by - 4 ---- eq (viii)
- 19z = - 95 --------- Adding eqs (viii) & (vii)
highlight_green%28matrix%281%2C3%2C+z+=+%28-+95%29%2F%28-+19%29%2C+or%2C+5%29%29
x + 6(5) = 31 ----- Substituting 5 for z in eq (vi)
x + 30 = 31
highlight_green%28matrix%281%2C5%2C+x%2C+%22=%22%2C+31+-+30%2C+or%2C+1%29%29
1 + y + 5 = 8 ------ Substituting 1 for x, and 5 for z in eq (i)
6 + y = 8
highlight_green%28matrix%281%2C5%2C+y%2C+%22=%22%2C+8+-+6%2C+or%2C+2%29%29