SOLUTION: Find the exact values of sin 2u,cos 2u, and tan 2u using the double-angle formulas. tan u = 5/3, 0 < u < &#960;/2

Algebra ->  Trigonometry-basics -> SOLUTION: Find the exact values of sin 2u,cos 2u, and tan 2u using the double-angle formulas. tan u = 5/3, 0 < u < &#960;/2      Log On


   



Question 1055399: Find the exact values of sin 2u,cos 2u, and tan 2u using the double-angle formulas.
tan u = 5/3, 0 < u < π/2

Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
Find the exact values of sin 2u,cos 2u, and tan 2u using the double-angle formulas.
tan u = 5/3, 0 < u < π/2
-------------
tan(u) = y/x
r = sqrt(x^2 + y^2) = sqrt(34)
---
sin(u) = y/r = 5sqrt(34)/34
cos(u) = x/r = 3sqrt(34)/34
---
sin(2u) = 2sin(u)*cos(u)
cos(2u) = sqrt(1 - sin^2(2u))
tan(2u) = sin(2u)/cos(2u)
---
In Q2,
sin is +
cos is -
tan is -