SOLUTION: Given {{{ n(x)=x^2-9 }}} {{{ m(x)=x+3 }}} Use the functions to find: a. {{{ (n-m)(-6) }}} b. {{{ (n*p)(0) }}} c. {{{ (p/m)(0) }}}

Algebra ->  Functions -> SOLUTION: Given {{{ n(x)=x^2-9 }}} {{{ m(x)=x+3 }}} Use the functions to find: a. {{{ (n-m)(-6) }}} b. {{{ (n*p)(0) }}} c. {{{ (p/m)(0) }}}      Log On


   



Question 1054892: Given +n%28x%29=x%5E2-9+
+m%28x%29=x%2B3+
Use the functions to find:
a. +%28n-m%29%28-6%29+
b. +%28n%2Ap%29%280%29+
c. +%28p%2Fm%29%280%29+

Answer by Edwin McCravy(20056) About Me  (Show Source):
You can put this solution on YOUR website!

Given:  n(x) = x2-9 
        m(x) = x+3 
        p(x) = √x+1
 
Use the functions to find:
 
a. (n-m)(-6)

First we find (n-m)(x)

(n-m)(x) = 

(n-m)(x) = n(x) - m(x) = 

(n-m)(x) = (x2-9) - (x+3) = 

(n-m)(x) = x2-9-x-3 = 

(n-m)(x) = x2-x-12 

Now substitute (-6) for x

(n-m)(-6) = (-6)2-(-6)-12

(n-m)(-6) = 36+6-12

(n-m)(-6) = 30

-------------------------
b.  (n•p)(0) 

First we find (n•p)(x)

(n•p)(x) = n(x)•p(x)

(n•p)(x) = (x2-9)•(√x+1)

Now substitute 0 for x

(n•p)(0) = (02-9)•√0+1

(n•p)(0) = (0-9)•√1

(n•p)(0) = (-9)•1

(n•p)(0) = -9

------------------

c. %28p%2Fm%29(0) 

First we find %28p%2Fm%29(x) 

%28p%2Fm%29(x) = %22p%28x%29%22%2F%22m%28x%29%22

%28p%2Fm%29(x) = sqrt%28x%2B1%29%2F%28x%2B3%29

Now substitute 0 for x

%28p%2Fm%29(0) = sqrt%280%2B1%29%2F%280%2B3%29

%28p%2Fm%29(0) = sqrt%281%29%2F3

%28p%2Fm%29(0) = 1%2F3

Edwin