SOLUTION: Solve for m if log base 6(3m+7) - log base 6(m+4) = 2 log base 6 (6) - 3 log base 6 (3)

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: Solve for m if log base 6(3m+7) - log base 6(m+4) = 2 log base 6 (6) - 3 log base 6 (3)      Log On


   



Question 1054115: Solve for m if log base 6(3m+7) - log base 6(m+4) = 2 log base 6 (6) - 3 log base 6 (3)
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
Solve for m if
log base 6(3m+7) - log base 6(m+4) = 2 log base 6 (6) - 3 log base 6 (3)
------------------------
log6[(3m+7)/(m+4)] = log6[6^2/3^3]
-----------------------------------------
(3m+7)/(m+4) = 36/27
-----------------------------
(3m+7)/(m+4) = 4/3
--------------------------
9m+21 = 4m+16
5m = -5
m = -1
-------------------
Cheers,
Stan H.
----------------