Hi
Assume that you toss a fair six-faced die two times
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5)
,6
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
a) 36 Outcomes
b) P(3 first) = 6(underlined)/36 = 1/6
-----------------
___1_2_3__4__5__6
1|_2_3_4__5__6__7
2|_3_4_5__6__7__8
3|_4_5_6__7__8__9
4|_5_6_7__8__9_10
5|_6_7_8__9_10_11
6|_7_8_9_10_11_12
c) P( Sum >=9) = 10/36 | Yes, good counting! P = 5/18
d) P(A|B) = P(A and B)/P(B)
P( Sum >=9) | 3 first) =
= 1/6
count them - only one 3 first AND >=9 (highlighted)
e) P(A|B) = P(A and B)/P(B)
P( Sum >=9) |first > 3)
= 9/18 = 1/2 Count them
Conditional Probability: Two events are not Independent
Event: where Sum >=9, depends on the parameters put of the first draw