SOLUTION: x+2y-5z= -12 2x+2y-3z= -2 3x-4y-z=11

Algebra ->  College  -> Linear Algebra -> SOLUTION: x+2y-5z= -12 2x+2y-3z= -2 3x-4y-z=11      Log On


   



Question 1047833: x+2y-5z= -12
2x+2y-3z= -2
3x-4y-z=11

Found 2 solutions by ewatrrr, Boreal:
Answer by ewatrrr(24785) About Me  (Show Source):
You can put this solution on YOUR website!
x+2y-5z= -12
2x+2y-3z= -2
3x - 8z = -14
|
2x+2y-3z= -2
3x-4y-z=11
|
4x+4y-6z= -4
3x-4y-z=11
7x - 7z = 7
|
3x - 8z = -14
x - z = 1 ***
|
3x - 8z = -14
-3x + 3z = -3
-5z = -15
z = 3, x = 4 1%2B3***, y = 2x%2B2y-3z=+-2, y+=%28+-8+%2B+9+-2%29%2F2
(4, -1/2, 3)


Answer by Boreal(15235) About Me  (Show Source):
You can put this solution on YOUR website!
x+2y-5z= -12
2x+2y-3z= -2
3x-4y-z=11
Determinant of
1===2====-5
2===2====-3
3==-4====-1
Determinant is 42 (calculator is far easier here)
solve for Dx by making a new matrix with the numerical constants in the x column. Find the determinant and then divide by the determinant just calculated.
-12===2===-5
-2====2===-3
11====-4===-1
Dx=168. Divide by determinant, and 168/42=4
solve for Dy, making a new matrix putting the numerical constants in the y column.
1====-12====-5
2====-2====-3
3====11====-1
Dy=-21 so dividing by determinant, y=-1/2. Do the same for the z column.
1====2===-12
2====2====-2
3===-4====11
Dz=126, and z=3
(4,-1/2,3)
Check
4-1-15=-12
8-1-9=-2
12+2-3=11
All check.