.
Find the maximum and minimum values of each given function and state the corresponding values of x. ( 0 <= x < 2pi )
(1) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Take the derivative on "x": y'(x) = -sin(x) + 2*(-sin(x/2)*(1/2) = - sin(x) - sin(x/2).
Equate it to zero. You will get an equation
-sin(x) - sin(x/2) = 0,   or
2*sin(x/2)*cos(x/2) + sin(x/2) = 0,   or   ( after factoring )
sin(x/2)*(2*cos(x/2) + 1) = 0.
It deploys in two independent equations
1.  sin(x/2) = 0  --->  x/2 = 0,  ,
,  --->  x = 0  and  x =
  --->  x = 0  and  x =  ( the only roots in the segment [
  ( the only roots in the segment [ ,
, ] ).
2.  2*cos(x/2) + 1 = 0  --->  cos(x/2) =
] ).
2.  2*cos(x/2) + 1 = 0  --->  cos(x/2) =  ---> x/2 =
  ---> x/2 =  ,
,  --->  x =
  --->  x =  ( the only root in the segment [
  ( the only root in the segment [ ,
, ] ).
 
Answer:
  a)  Maximum at x = 0:                        3.
  b)  Minimum at x =
] ).
 
Answer:
  a)  Maximum at x = 0:                        3.
  b)  Minimum at x =  :
:   = -1.5.
  c)  Local maximum at x =
   = -1.5.
  c)  Local maximum at x =  : 1 + 2*(-1) = -1.
: 1 + 2*(-1) = -1.
 
  
  | 
   
 Plot y = cos(x)+2cos(x/2)
 
 |