1. cos(3x) = cos(2x+x) = cos(2x)cos(x)-sin(2x)sin(x) =
(2cos˛(x)-1)cos(x)-2sin(x)cos(x)sin(x) =
2cosł(x)-cos(x)-2sin˛(x)cos(x) =
2cosł(x)-cos(x)-2[1-cos˛(x)]cos(x) =
2cosł(x)-cos(x)-2cos(x)+2cosł(x)
4cosł(x)-3cos(x)
So cos(3x)=4cosł(x)-3cos(x) and cos(2x)=2cos˛(x)-1.
So cos(6x)=2[cos(3x)]˛-1 or 2[4cosł(x)-3cos(x)]˛-1.
We can expand it to become
2[16cos6(x)-24cos4(x)+9cos˛(x)]-1
Final result: cos(6x) =
32cos6(x) - 48cos4(x) + 18cos2(x) - 1
------------------------
2.
----------------------
This one requires some tricks of subtracting and adding the
same quantity to create a use for some double-angle identities.
We work with the left side:
Subtract 1 and add 1 to create a use for the identity
Using that identity, the first two terms become cos(6x)
Subtract and add cos(7x)cos(x) to create a
use for the identity
Factor a "-" out of 3rd and 4th terms:
Swap the terms in the parentheses to recognize the identity:
Use the identity
7x-x = 6x
Cancel the two opposite terms
Tricky, huh?
Edwin