SOLUTION: Nlog base 2 N=3500 I tried base changes log 3500=log N^N/(log 2) (log 3500) (log 2)=log N^N (3.54)(.301)=log N^N 1.066=log N^N 10^1.066=N^N 11.62=N^N N is about 3.4 It do

Algebra ->  Exponents -> SOLUTION: Nlog base 2 N=3500 I tried base changes log 3500=log N^N/(log 2) (log 3500) (log 2)=log N^N (3.54)(.301)=log N^N 1.066=log N^N 10^1.066=N^N 11.62=N^N N is about 3.4 It do      Log On


   



Question 104541: Nlog base 2 N=3500 I tried base changes
log 3500=log N^N/(log 2)
(log 3500) (log 2)=log N^N
(3.54)(.301)=log N^N
1.066=log N^N
10^1.066=N^N
11.62=N^N
N is about 3.4
It doesn't check out Help please

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
Nlog base 2 N=3500 I tried base changes
log 3500=log N^N/(log 2)
(log 3500) (log 2)=log N^N
(3.54)(.301)=log N^N
1.066=log N^N
10^1.066=N^N
11.62=N^N
N= 11.62^(1/N)
Nlog base 2 N=3500 I tried base changes
log 3500=log N^N/(log 2)
(log 3500) (log 2)=log N^N
(3.54)(.301)=log N^N
1.066=log N^N
10^1.066=N^N
11.62=N^N
N = 11.62^(1/N)
------------
I graphed y=x and y=11.62^(1/x) on the same screen and
found their intersection at x = 2.5838137
---------------
Checking:
11.62 = 2.5838137^2.5838137
11.62 = 11.61999999999...
==========
Cheers,
Stan H.