.
A metallurgist has one alloy containing 24% aluminum and another containing 70% aluminum.
How many pounds of each alloy must he use to make 44 pounds of a third alloy containing 58% aluminum?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Take "x" pounds of the first alloy containing 24% aluminum.
Take (44-x) pounds of the second alloy containing 70% aluminum.
After melting and mixing these alloys you will have 44 pounds of a new alloy.
To provide a 58% content of aluminum in it, the amount "x" must satisfies this equation
0.24x + 0.7*(44-x) = 0.58*44, or
0.24x + 30.8 - 0.7x = 25.52, or
-0.46x = 25.52 - 30.8,
-0.46x = --5.28,
x =
= 11.478.
So, you need to mix 11.478 pounds of the 24% alloy with 44-11.478 = 32.52 pounds of the 70% alloy.
Answer. Metallurgist need to mix 11.478 pounds of the 24% alloy with 32.522 pounds of the 70% alloy.
For more mixture word problems on alloys see the lesson
- Word problems on mixtures for alloys
in this site.