SOLUTION: x^2+y^2+z^2=2(x+z-1) then the value of x^3+y^3+z^3

Algebra ->  Equations -> SOLUTION: x^2+y^2+z^2=2(x+z-1) then the value of x^3+y^3+z^3      Log On


   



Question 1043698: x^2+y^2+z^2=2(x+z-1) then the value of x^3+y^3+z^3
Answer by ikleyn(52824) About Me  (Show Source):
You can put this solution on YOUR website!
.
x^2+y^2+z^2=2(x+z-1) then the value of x^3+y^3+z^3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If  x%5E2%2By%5E2%2Bz%5E2 = 2%28x%2Bz-1%29,  then

x%5E2+-+2x+%2B+y%5E2+%2B+z%5E2+-+2z = -2,

%28x-1%29%5E2+-+1+%2B+y%5E2+%2B+%28z-1%29%5E2+-+1 = -2,

%28x-1%29%5E2+%2B+y%5E2+%2B+%28z-1%29%5E2 = 0.

We have the sum of squares of three real numbers equal to zero.
Hence, each of the three numbers is equal to zero:

x-1 = 0,  y = 0  and  z-1 = 0.

In other words, x = 1, y = 0, z = 1.

Now x%5E3+%2B+y%5E3+%2B+z%5E3%7D%7D+=+%7B%7B%7B%28-1%29%5E3+%2B+0%5E3+%2B+%28-1%29%5E3 = -2.

Solved.