You can
put this solution on YOUR website! .
Prove that
CosA+cos(120+A)+cos(120-A)=0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Use the addition formula for cosine
cos(alpha + beta) = cos(alpha)*cos(beta) - sin(alpha)*sin(beta)
(see the lesson Addition and subtraction formulas in this site). You will have
cos(120+A) = cos(120)*cos(A) - sin(120)*sin(A),
cos(120-A) = cos(120)*cos(A) + sin(120)*sin(A).
Add these two equality (both sides). You will get
cos(120+A) + cos(120-A) = 2cos(120)*cos(A).
Now use that cos(120) =
. Hence 2cos(120) = -1.
Hence,
cos(A) + cos(120+A) + cos(120-A) = cos(A) + 2cos(120)*cos(A) = cos(A) - cos(A) = 0.
QED.