SOLUTION: Subtract (4x^2+6x-9) from (2x^2-7x+6) would it be: -2x^2-13x-15 ? and (5x^3y^7)^3 would it be : 50x^6+y^14 ? Thank you so much for your help !!

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: Subtract (4x^2+6x-9) from (2x^2-7x+6) would it be: -2x^2-13x-15 ? and (5x^3y^7)^3 would it be : 50x^6+y^14 ? Thank you so much for your help !!      Log On


   



Question 1037093: Subtract
(4x^2+6x-9) from (2x^2-7x+6)
would it be:
-2x^2-13x-15 ?


and
(5x^3y^7)^3
would it be :
50x^6+y^14 ?
Thank you so much for your help !!

Found 2 solutions by Theo, rothauserc:
Answer by Theo(13342) About Me  (Show Source):
You can put this solution on YOUR website!
Subtract
(4x^2+6x-9) from (2x^2-7x+6)
would it be:
-2x^2-13x-15 ?

you are looking at (2x^2 - 7x + 6) - (4x^2 + 6x - 9)

remove the parentheses to get 2x^2 - 7x + 6 - 4x^2 - 6x + 9

combine like terms to get -2x^2 - 13x + 15.

you were close.
looks like you messed up on the subtracting of -9 from 6.
6 - (-9) = 6 + 9 = + 15.
-----

(5x^3y^7)^3
would it be :
50x^6+y^14 ?

(5x^3y^7)^3 = (5*x^3*y^7)^3 = 5^3 * (x^3)^3 * (y^7)^3 = 125 * x^(3*3) * (y^(7*3) = 125 * x^9 * y^21.

your solution should be 125x^9y^21.

the basic rules for working with exponents is:

x^a*x^b = x^(a+b)

(x^a)^b = x^(a*b)

(x^a*y^b)^c = (x^a)^c * (y^b)^c = x^(a*c) * y^(b*c)

here's a lesson on working with exponents that might help.

http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut2_exp.htm








Answer by rothauserc(4718) About Me  (Show Source):
You can put this solution on YOUR website!
(2x^2-7x+6) - (4x^2+6x-9) = -2x^2 - 13x + 15
:
note that - -9 is +9
:
(5x^3y^7)^3 = 5^3x^9y^21 = 125x^9y^21
:
note that we multiply exponents in this problem
: