SOLUTION: Calculate the value of x, if ((Sin^2)x) + 2sinx - 2cosx - (1/2)sin2x = 0

Algebra ->  Trigonometry-basics -> SOLUTION: Calculate the value of x, if ((Sin^2)x) + 2sinx - 2cosx - (1/2)sin2x = 0      Log On


   



Question 1031125: Calculate the value of x, if
((Sin^2)x) + 2sinx - 2cosx - (1/2)sin2x = 0

Found 2 solutions by Alan3354, ikleyn:
Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
Calculate the value of x, if
((Sin^2)x) + 2sinx - 2cosx - (1/2)sin2x = 0
-------------
((Sin^2)x) + 2sinx - 2cosx - sinx*cosx = 0
sin*(sin + 2) - cos*(sin + 2) = 0
(sin - cos)*(sin + 2) = 0
x = -2 *** No real solution, ignore.
-------------
sin = cos
x = pi/4, 9pi/4 + 2n*pi, n = any integer

Answer by ikleyn(52915) About Me  (Show Source):
You can put this solution on YOUR website!
.
Calculate the value of x, if
((Sin^2)x) + 2sinx - 2cosx - (1/2)sin2x = 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

After you get 

sin(x) = cos(x),

as the previous tutor got, the continuation is

tan(x) = 1.

Hence, x = pi%2F4+%2B+2k%2Api  or/and  x = 5pi%2F4+%2B+2k%2Api, k = 0, +/-1, +/- 2, . . .