SOLUTION: Prove the following identity: {{{cscx/1+cot^2x=sinx}}}

Algebra ->  Trigonometry-basics -> SOLUTION: Prove the following identity: {{{cscx/1+cot^2x=sinx}}}      Log On


   



Question 1030466: Prove the following identity:
cscx%2F1%2Bcot%5E2x=sinx

Answer by Boreal(15235) About Me  (Show Source):
You can put this solution on YOUR website!
cscx/1+cot^2x=sinx
(1+cot^2 x)=1+ cos^2 x/sin^2 x=[sin ^2 x+ cos^2 x]/sin^2 x=1/sin^2 x
csc x=1/sin x
Therefore it is 1/sin x/(1/sin ^2 x)= sin x
The identity is proven.