SOLUTION: If the quadratic 3x^2+bx+10 can be written in the form a(x+m)^2+n, where m and n are integers, what is the largest integer that must be a divisor of b?
Algebra ->
Graphs
-> SOLUTION: If the quadratic 3x^2+bx+10 can be written in the form a(x+m)^2+n, where m and n are integers, what is the largest integer that must be a divisor of b?
Log On
Question 1029908: If the quadratic 3x^2+bx+10 can be written in the form a(x+m)^2+n, where m and n are integers, what is the largest integer that must be a divisor of b?