| 
 
 
 
Question 1028387:  if the line 3x+5y=k touches ellipse 16x^2+25y^2=400, then what is value of k 
 Answer by Alan3354(69443)      (Show Source): 
You can  put this solution on YOUR website! if the line 3x+5y=k touches ellipse 16x^2+25y^2=400, then what is value of k 
---------- 
The slope of the line, m = -3/5 
---- 
Find the slope of the ellipse 16x^2+25y^2=400 
-- 
16x^2+25y^2=400 
differentiate implicitly 
32x*dx + 50y*dy = 0 
dy/dx = -32x/50y 
--- 
-16x/25y = -3/5 
80x = 75y 
y = 16x/15 
----------- 
16x^2+25y^2=400 
Sub for y 
16x^2+25(16x/15)^2=400 
16x^2+25(256x^2/225)=400 
16x^2+ 256x^2/9 = 400 
400x^2 = 3600 
x = ±3 
------------ 
--> (3,3.2)  
3x+5y=k 
9 + 16 = k 
k = 25 
------------- 
and (-3,-3.2) 
-9 - 16 = k 
k = -25 
-------- 
  | 
 
  
 
 |   
 
 |   
 |  |