SOLUTION: Could someone please check my work? I am supposed to label each statement as True or False, and if False, replace the words in all caps to produce a true statement. 1) A sequenc

Algebra ->  Sequences-and-series -> SOLUTION: Could someone please check my work? I am supposed to label each statement as True or False, and if False, replace the words in all caps to produce a true statement. 1) A sequenc      Log On


   



Question 1028342: Could someone please check my work? I am supposed to label each statement as True or False, and if False, replace the words in all caps to produce a true statement.
1) A sequence is a function whose domain is A SUBSET OF THE INTEGERS. I chose False because my book states "a set of consecutive integers".
2) A sequence can be defined EITHER EXPLICITLY OR IMPLICITLY. I think this is true because a sequence can be clearly stated or implied.
3) The sum of an infinite geometric series is finite only if THE ABSOLUTE VALUE OF THE COMMON RATIO IS LESS THAN ONE. I think this is true.
I appreciate any help!

Answer by ikleyn(52781) About Me  (Show Source):
You can put this solution on YOUR website!
.
Could someone please check my work? I am supposed to label each statement as True or False, and if False, replace the words in all caps to produce a true statement.
I appreciate any help!

1) A sequence is a function whose domain is A SUBSET OF THE INTEGERS.  I chose False because my book states "a set of consecutive integers".     //Agree.


2) A sequence can be defined EITHER EXPLICITLY OR IMPLICITLY.  I think this is true because a sequence can be clearly stated or implied.         //Agree.


3) The sum of an infinite geometric series is finite only if THE ABSOLUTE VALUE OF THE COMMON RATIO IS LESS THAN ONE.  I think this is true.     //Agree.