SOLUTION: prove the following
1.tanAsinA+cosA=secA
2.sinA-sinAcos^2A=sin3A
3.sinAcscA-cos^A=sin^2A
4.sinA+sinAcot^2A=cscA
5.tanA+cotA=secAcscA
6.1/1-sinA+1/1+sinA=2sec^2A
Algebra ->
Test
-> SOLUTION: prove the following
1.tanAsinA+cosA=secA
2.sinA-sinAcos^2A=sin3A
3.sinAcscA-cos^A=sin^2A
4.sinA+sinAcot^2A=cscA
5.tanA+cotA=secAcscA
6.1/1-sinA+1/1+sinA=2sec^2A
Log On
Question 1024897: prove the following
1.tanAsinA+cosA=secA
2.sinA-sinAcos^2A=sin3A
3.sinAcscA-cos^A=sin^2A
4.sinA+sinAcot^2A=cscA
5.tanA+cotA=secAcscA
6.1/1-sinA+1/1+sinA=2sec^2A Answer by Alan3354(69443) (Show Source):
You can put this solution on YOUR website! prove the following
1.tanAsinA+cosA=secA
---
sin^2/cos + cos = sec
Multiply thru by cos
sin^2 + cos^2 = 1 QED
----------
2.sinA-sinAcos^2A=sin3A
It it's sin^3 on the right, divide thru by sine.
-------------
3.sinAcscA-cos^A=sin^2A
1 - cos^2 = sin^2 QED
-------
4.sinA+sinAcot^2A=cscA
sin + cos^2/sin = csc
Multiply thru by sine
sin^2 + cos^2 = 1 QED
--------------
5.tanA+cotA=secAcscA
sin/cos + cos/sin = 1/(sin*cos)
Multiply thru by sin*cos
----------------
6.1/1-sinA+1/1+sinA=2sec^2A
((1+sin) + (1-sin))/(1-sin^2) = 2sec^2
2/cos^2 = 2/cos^2 QED
================================
I'm still looking for an example where working 1 side only makes a difference.