| 
 
 
| Question 1016590:  x+y+z+w=1
 2x+3z+2w=5
 3x-y+w=-12
 2y+5z+3w=7
 
 Answer by FrankM(1040)
      (Show Source): 
You can put this solution on YOUR website! E1  x+y+z+w=1 E2  x+0y+3z+2w=5
 E3  3x-y+0z+w=-12
 E4  0x+2y+5z+3w=7
 4 equations, 4 unknowns. We need to combine 3 pairs of equation to eliminate a variable. Let's start with x. Note, I added the missing variables using 0 as a coefficient.
 -3x+-3y+-3z+-3w=-3  E1*-3
 3x-y+0z+w=-12            E3
 0x-4y-3z-2w=-15   sum1
 -3x+0y-9z-6w=-15  E2*-3
 3x-y+0z+w=-12
 0x-y-9z-5w=-27  sum2
 2y+5z+3w=7  E4 x already gone
 -4y-3z-2w=-15  sum1
 -y-9z-5w=-27  sum2
 4y+10z+6w=14   E4*2
 -4y-3z-2w=-15   sum1
 0y+7z+4w=-1  sum3
 -4y-36z-20w=-108  sum2*4
 4y+10z+6w=14   E4*2
 0y-26z-14w=-94   sum4
 49z+28w=-7  sum3*7
 -52z-28w=-188   sum4*2
 -3z=-195
 z=65   go to sum 4
 -26(65)-14w=-94
 -1690-14w=-94
 -14w=1596
 w=-114
 x+0y+3z+2w=5  E2
 x+3(65)+2(-114)=5
 x+195-228=5
 x= 38
 Last, E1
 x+y+z+w=1
 38+y+65-114=1
 y= 12
 (38,12,65,-114)
 
 | 
  
 | 
 |