SOLUTION: If a,b,c are in an arithmetic progression and x,y,z are in a geometric progression, prove that (x^b)(y^c)(z^a)=(x^c)(y^a)(z^b)
Algebra ->
Sequences-and-series
-> SOLUTION: If a,b,c are in an arithmetic progression and x,y,z are in a geometric progression, prove that (x^b)(y^c)(z^a)=(x^c)(y^a)(z^b)
Log On
Question 1014447: If a,b,c are in an arithmetic progression and x,y,z are in a geometric progression, prove that (x^b)(y^c)(z^a)=(x^c)(y^a)(z^b) Answer by ikleyn(52794) (Show Source):
You can put this solution on YOUR website! .
If a,b,c are in an arithmetic progression and x,y,z are in a geometric progression, prove that (x^b)(y^c)(z^a)=(x^c)(y^a)(z^b)
-----------------------------------------------------------