SOLUTION: If a,b,c are in an arithmetic progression and x,y,z are in a geometric progression, prove that (x^b)(y^c)(z^a)=(x^c)(y^a)(z^b)

Algebra ->  Sequences-and-series -> SOLUTION: If a,b,c are in an arithmetic progression and x,y,z are in a geometric progression, prove that (x^b)(y^c)(z^a)=(x^c)(y^a)(z^b)      Log On


   



Question 1014447: If a,b,c are in an arithmetic progression and x,y,z are in a geometric progression, prove that (x^b)(y^c)(z^a)=(x^c)(y^a)(z^b)
Answer by ikleyn(52794) About Me  (Show Source):
You can put this solution on YOUR website!
.
If a,b,c are in an arithmetic progression and x,y,z are in a geometric progression, prove that (x^b)(y^c)(z^a)=(x^c)(y^a)(z^b)
-----------------------------------------------------------

Just solved in

http://www.algebra.com/algebra/homework/Geometry-proofs/Geometry_proofs.faq.question.1014418.html