SOLUTION: If cosA+cosB+cosC=0, prove that cos3A+cos3B+cos3C=12cosAcosBcosC

Algebra ->  Trigonometry-basics -> SOLUTION: If cosA+cosB+cosC=0, prove that cos3A+cos3B+cos3C=12cosAcosBcosC      Log On


   



Question 1014364: If cosA+cosB+cosC=0, prove that cos3A+cos3B+cos3C=12cosAcosBcosC
Answer by ikleyn(52900) About Me  (Show Source):
You can put this solution on YOUR website!
.
If cosA+cosB+cosC=0, prove that cos3A+cos3B+cos3C=12cosAcosBcosC
------------------------------------------------------------------

First of all, we need to prove that 

if x + y + z = 0 then x%5E3+%2B+y%5E3+%2B+z%5E3 = 3xyz 

x + y + z = 0 

x + y = - z 

%28x+%2B+y%29%5E3 = -z%5E3 

x%5E3+%2B+y%5E3+%2B+3%28x%5E2%29y+%2B+3x%28y%5E2%29 = -z%5E3 

x%5E3+%2B+y%5E3+%2B+z%5E3 = -+3%28x%5E2%29y+-+3x%28y%5E2%29

Add 3xyz -3xyz (that is 0) to the right hand side 

x%5E3+%2B+y%5E3+%2B+z%5E3 = -+3%28x%5E2%29y+-+3x%28y%5E2%29+-+3xyz+%2B+3xyz 

Factor -3xy from the first three terms on the right hand side 

x%5E3+%2B+y%5E3+%2B+z%5E3 = -3xy(x + y + z) + 3xyz 

x%5E3+%2B+y%5E3+%2B+z%5E3 = -3xy(0) + 3xyz 

x%5E3+%2B+y%5E3+%2B+z%5E3 = 3xyz 

------- 

Now let x = cosA, y = cosB, z = cosC 

so x + y + z = 0 

Since cos3A = 4%28cosA%29%5E3+-+3cosA , then cos3A = 4x%5E3+-3x 

Similarly, cos3B = 4y%5E3+-+3y 

and cos3C = 4z%5E3+-+3z 

Add all three equations, we have: 

cos3A+cos3B+cos3C = 4x%5E3+-3x+%2B+4y%5E3+-+3y+%2B+4z%5E3+-+3z 

= 4%28x%5E3+%2B+y%5E3+%2B+z%5E3%29+-+3%28x+%2B+y+%2Bz%29 

= 4(3xyz) - 3(0) 

= 12xyz 

= 12cosAcosBcosC 

Q.E.D 


I brought it for you from https://answers.yahoo.com/question/index?qid=20150911203611AAaEjdD.