|  | 
| 
 
 
| Question 1011723:  t^2-k^2<6
 t+k>4
 t and k are positive in integers if t>k what is the value of t?
 
 Answer by rothauserc(4718)
      (Show Source): 
You can put this solution on YOUR website! 1) t^2 - k^2 < 6 2) t + k > 4
 from inequality 1
 (t+k)(t-k) < 6
 t > k means (t-k) > 0, therefore
 4 < t + k < 6 / (t - k)
 4(t-k) < (t+k)(t-k) < 6
 **************************************
 first case
 4 < t + k
 4 - k < t
 *************************************
 second case
 4(t-k) < 6
 t -k < 1.5
 t < k + 1.5
 ************************************
 we have
 4 - k < t < k + 1.5
 4 < t+k < 2k + 1.5
 2k + 1.5 > 4
 2k > 2.5
 k > 5/4
 ****************************************************
 note that t and k are positive integers, therefore
 k=2 and t=3
 ****************************************************
 check answer
 inequality 1
 3^2 - 2^2 < 6
 5 < 6
 inequality 2
 3 + 2 > 4
 5 > 4
 
 | 
  
 | 
 |  |  |