SOLUTION: calculate the exact value of the following expressions justifying the steps of calculating :
Arcsin ( sin (2π/5) ) , Arcsin ( cos ( 3π/7) ) , sin (Arccos (-3/7))
ad
Algebra ->
Trigonometry-basics
-> SOLUTION: calculate the exact value of the following expressions justifying the steps of calculating :
Arcsin ( sin (2π/5) ) , Arcsin ( cos ( 3π/7) ) , sin (Arccos (-3/7))
ad
Log On
Question 1008289: calculate the exact value of the following expressions justifying the steps of calculating :
Arcsin ( sin (2π/5) ) , Arcsin ( cos ( 3π/7) ) , sin (Arccos (-3/7))
ad arccos x = 2Arccos (3/4) Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! Arcsin ( sin (2π/5) ) = (2pi/5)
-------------------------------------
Arcsin ( cos ( 3π/7) ) = 0.2244
-------------------------
sin (Arccos (-3/7)) = 0.9035
------------------------------
arccos x = 2Arccos (3/4)
----
Take the cos of both sides to get:
x = 0.125
-------------