SOLUTION: Let f(x)=7x^3-7x^2+4x-6. Find g(x) so that (f-g)(x)=4x^3+3x^2-9x-9
Algebra
->
Functions
-> SOLUTION: Let f(x)=7x^3-7x^2+4x-6. Find g(x) so that (f-g)(x)=4x^3+3x^2-9x-9
Log On
Algebra: Functions, Domain, NOT graphing
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Functions
Question 1005576
:
Let f(x)=7x^3-7x^2+4x-6. Find g(x) so that (f-g)(x)=4x^3+3x^2-9x-9
Answer by
jim_thompson5910(35256)
(
Show Source
):
You can
put this solution on YOUR website!
(f-g)(x) = 4x^3+3x^2-9x-9
f(x) - g(x) = 4x^3+3x^2-9x-9
[ f(x) ] - [ g(x) ] = 4x^3+3x^2-9x-9
[ 7x^3-7x^2+4x-6 ] - [ g(x) ] = 4x^3+3x^2-9x-9
[ 7x^3-7x^2+4x-6 ] - [ g(x) ]
-[ 7x^3-7x^2+4x-6 ]
= [4x^3+3x^2-9x-9]
-[ 7x^3-7x^2+4x-6 ]
g(x) = [4x^3+3x^2-9x-9] - [ 7x^3-7x^2+4x-6 ]
g(x) = 4x^3+3x^2-9x-9 - 7x^3 + 7x^2 - 4x + 6
g(x) = (4x^3 - 7x^3)+(3x^2 + 7x^2) + (-9x - 4x) + (-9 + 6)
g(x) = (-3x^3)+(10x^2) + (-13x) + (-3)
g(x) = -3x^3+10x^2-13x-3
Final Answer:
g(x) = -3x^3+10x^2-13x-3