SOLUTION: On an upstream trip, a canoe travels 40 km in 5 hours. Downstream, it travels the same distance in half the time. What is the rate of the canoe in still water and the rate of the

Algebra ->  Customizable Word Problem Solvers  -> Travel -> SOLUTION: On an upstream trip, a canoe travels 40 km in 5 hours. Downstream, it travels the same distance in half the time. What is the rate of the canoe in still water and the rate of the      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 998846: On an upstream trip, a canoe travels 40 km in 5 hours. Downstream, it travels the same distance in half the time. What is the rate of the canoe in still water and the rate of the current?
Answer by ikleyn(52803) About Me  (Show Source):
You can put this solution on YOUR website!
.
On an upstream trip, a canoe travels 40 km in 5 hours. Downstream, it travels the same distance in half the time.
What is the rate of the canoe in still water and the rate of the current?
-------------------------------------------------------------------

On an upstream trip,  the canoe speed relative to the river banks is  40_km%2F5_hours = 8 km%2Fh.

This speed is the difference of the speed of canoe relative water,  u,  and the speed of current,  v:

8 = u - v.         (1)

Downstream,  the canoe speed relative to the river banks is twice more:  40%2F2.5 = 16 km%2Fh.

This speed is the sum of the speed of canoe relative water,  u,  and the speed of current,  v:

16 = u + v.         (2)

Add  (1)  and  (2).  You will get

2u = 8 + 16 = 24,  hence,  u = 24%2F2 = 12 km%2Fh.
Then  v = 4 km%2Fh.

Answer.  The canoe speed in a still water is  12 km%2Fh.
              The current speed is  4 km%2Fh.