SOLUTION: kinematic question:a highway patrol at rest is passed by a bus travelling at constant speed of 126 km/h.two seconds later the patrol car starts accelerates at a constant rate of 5m

Algebra ->  Customizable Word Problem Solvers  -> Travel -> SOLUTION: kinematic question:a highway patrol at rest is passed by a bus travelling at constant speed of 126 km/h.two seconds later the patrol car starts accelerates at a constant rate of 5m      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 697502: kinematic question:a highway patrol at rest is passed by a bus travelling at constant speed of 126 km/h.two seconds later the patrol car starts accelerates at a constant rate of 5m/s2 until it reaches a speed of 162 km/h.if the patrol car then maintains a constant speed of 162km/h , determine the distance travelled by the patrol car to overtake the bus.

thank you tutor.

Answer by KMST(5328) About Me  (Show Source):
You can put this solution on YOUR website!
I suspect you are taking physics in high school or college.
However, to cover any possible situation, I'll add the physics "formulas" in parenthesis,
but I will show the solution as if it was a problem for a fifth grader.
A physics instructor may expect a different way to solve the problem,
but I hope I found the simplest way,
and I believe the simplest way is the best way.

Some painful conversions seem needed,
but the numbers were chosen so as to make this easier.
126km%2F1hr=126%2A1000m%2F3600s=35m/s
162km%2F1hr=162%2A1000m%2F3600s=45m/s

Accelerating from 0 to 45m/s at 5m/s of speed increase per second takes
45%2F5=9 seconds.
(v-v%5B0%5D=a%2At <--> t=%28v-v%5B0%5D%29%2Fa but for this case v%5B0%5D=0)

While accelerating, the police car has an average speed of %2845%2B0%29%2F2=22.5m/s
(because at constant acceleration, the average velocity is the average of the initial and final velocities)
so in 9s it covers a distance of 9%2A22.5=202.5m
(d=v%2At)

The distance (d, in meters) covered by the bus and also by the police car can be calculated from either point of view.
(d=v%2At)

The bus is moving for t seconds at 35m/s, covering a distance of
d=35%2At meters.

During those t seconds, the police car is stopped for 2 seconds,
covers 202.5m for the next 9 seconds (while accelerating),
and after those first 11 seconds,
moves at 45m/s for the rest of the time (t-11 seconds).
The distance covered by the police car is
202.5%2B45%28t-11%29=202.5%2B45t-495=45t-292.5 meters

Because the same distance d is covered by the bus and by the car
during the t seconds between the time the bus passes the patrol car and the time the patrol car overtakes the bus.
45t-292.5=35t --> 45t-35t=292.5 --> 10t=292.5 --> t=292.5%2F10 --> highlight%28t=29.25%29 seconds.

Substituting into d=35t we get
d=35%2A29.25 --> highlight%28d=1023.75%29 meters (about 1 km).