Tutors Answer Your Questions about Numbers Word Problems (FREE)
Question 1165989: Starting with a positive integer, apply the following operations any number
of times and in any order to produce a list of numbers:
1. double the current term, or
2. delete the last digit of the current term.
An example of such a list is
231, 23, 46, 92, 9, 18.
(a) Find a list which starts with 51 and ends in 129.
(b) Show that every starting number can produce a list ending in 1.
A cycle is a list which eventually returns to the starting number, such as
24, 48, 96, 9, 18, 36, 3, 6, 12, 24.
(c) Show that every number from 1 to 41 occurs in a cycle with at most
13 distinct terms.
Click here to see answer by n2(21) |
Question 1165989: Starting with a positive integer, apply the following operations any number
of times and in any order to produce a list of numbers:
1. double the current term, or
2. delete the last digit of the current term.
An example of such a list is
231, 23, 46, 92, 9, 18.
(a) Find a list which starts with 51 and ends in 129.
(b) Show that every starting number can produce a list ending in 1.
A cycle is a list which eventually returns to the starting number, such as
24, 48, 96, 9, 18, 36, 3, 6, 12, 24.
(c) Show that every number from 1 to 41 occurs in a cycle with at most
13 distinct terms.
Click here to see answer by ikleyn(53467)  |
Question 1165989: Starting with a positive integer, apply the following operations any number
of times and in any order to produce a list of numbers:
1. double the current term, or
2. delete the last digit of the current term.
An example of such a list is
231, 23, 46, 92, 9, 18.
(a) Find a list which starts with 51 and ends in 129.
(b) Show that every starting number can produce a list ending in 1.
A cycle is a list which eventually returns to the starting number, such as
24, 48, 96, 9, 18, 36, 3, 6, 12, 24.
(c) Show that every number from 1 to 41 occurs in a cycle with at most
13 distinct terms.
Click here to see answer by CPhill(2138)  |
Question 1166184: Starting with a positive integer, apply the following operations any number
of times and in any order to produce a list of numbers:
1. double the current term, or
2. delete the last digit of the current term.
An example of such a list is
231, 23, 46, 92, 9, 18.
(a) Find a list which starts with 51 and ends in 129.
(b) Show that every starting number can produce a list ending in 1.
A cycle is a list which eventually returns to the starting number, such as
24, 48, 96, 9, 18, 36, 3, 6, 12, 24.
(c) Show that every number from 1 to 41 occurs in a cycle with at most
13 distinct terms.
I want to make sure I've done this question correctly, can someone do it so I know I've done it right? Thanks
Click here to see answer by n2(21) |
Question 1166184: Starting with a positive integer, apply the following operations any number
of times and in any order to produce a list of numbers:
1. double the current term, or
2. delete the last digit of the current term.
An example of such a list is
231, 23, 46, 92, 9, 18.
(a) Find a list which starts with 51 and ends in 129.
(b) Show that every starting number can produce a list ending in 1.
A cycle is a list which eventually returns to the starting number, such as
24, 48, 96, 9, 18, 36, 3, 6, 12, 24.
(c) Show that every number from 1 to 41 occurs in a cycle with at most
13 distinct terms.
I want to make sure I've done this question correctly, can someone do it so I know I've done it right? Thanks
Click here to see answer by ikleyn(53467)  |
Question 1166184: Starting with a positive integer, apply the following operations any number
of times and in any order to produce a list of numbers:
1. double the current term, or
2. delete the last digit of the current term.
An example of such a list is
231, 23, 46, 92, 9, 18.
(a) Find a list which starts with 51 and ends in 129.
(b) Show that every starting number can produce a list ending in 1.
A cycle is a list which eventually returns to the starting number, such as
24, 48, 96, 9, 18, 36, 3, 6, 12, 24.
(c) Show that every number from 1 to 41 occurs in a cycle with at most
13 distinct terms.
I want to make sure I've done this question correctly, can someone do it so I know I've done it right? Thanks
Click here to see answer by CPhill(2138)  |
Question 1210416: The water park is a popular field trip destination. This year the senior class at High School A and
the senior class at High School B both planned trips there. The senior class at High School A
rented and filled 10 vans and 8 buses with 394 students. High School B rented and filled 5 vans
and 10 buses with 365 students. Every van had the same number of students in it as did the
buses. Find the number of students in each van and in each bus.
Click here to see answer by ikleyn(53467)  |
Question 1180063: In the last two times around the game board, Wendell thought he was a goner. First, he had to pay ½ of his money in rent to somebody. He then had to pay $25 because of a “Chance” card. After that, he landed on another property where he had to pay 3/5 of his remaining money in rent. Fortunately, on his next turn he passed “Go” and collected $200. However, he landed on a property that wacked him for ½ of his money. Next, he got a “Chance” card and landed in jail. After he paid $50 to get out, the poor guy only had $70 cash left - no property, no nothing. How much money did he have at the beginning of this narrative?
Click here to see answer by CPhill(2138)  |
Question 1208831: Evan thinks of two numbers. If he adds 2 to the first number and then multiplies the sum by three, the result is the second number. if he subtracts 3 times the first number from the second number, the result is 8, what are the numbers?
Click here to see answer by greenestamps(13258)  |
Question 1208831: Evan thinks of two numbers. If he adds 2 to the first number and then multiplies the sum by three, the result is the second number. if he subtracts 3 times the first number from the second number, the result is 8, what are the numbers?
Click here to see answer by MathTherapy(10614)  |
|
Older solutions: 1..45, 46..90, 91..135, 136..180, 181..225, 226..270, 271..315, 316..360, 361..405, 406..450, 451..495, 496..540, 541..585, 586..630, 631..675, 676..720, 721..765, 766..810, 811..855, 856..900, 901..945, 946..990, 991..1035, 1036..1080, 1081..1125, 1126..1170, 1171..1215, 1216..1260, 1261..1305, 1306..1350, 1351..1395, 1396..1440, 1441..1485, 1486..1530, 1531..1575, 1576..1620, 1621..1665, 1666..1710, 1711..1755, 1756..1800, 1801..1845, 1846..1890, 1891..1935, 1936..1980, 1981..2025, 2026..2070, 2071..2115, 2116..2160, 2161..2205, 2206..2250, 2251..2295, 2296..2340, 2341..2385, 2386..2430, 2431..2475, 2476..2520, 2521..2565, 2566..2610, 2611..2655, 2656..2700, 2701..2745, 2746..2790, 2791..2835, 2836..2880, 2881..2925, 2926..2970, 2971..3015, 3016..3060, 3061..3105, 3106..3150, 3151..3195, 3196..3240, 3241..3285, 3286..3330, 3331..3375, 3376..3420, 3421..3465, 3466..3510, 3511..3555, 3556..3600, 3601..3645, 3646..3690, 3691..3735, 3736..3780, 3781..3825, 3826..3870, 3871..3915, 3916..3960, 3961..4005, 4006..4050, 4051..4095, 4096..4140, 4141..4185, 4186..4230, 4231..4275, 4276..4320, 4321..4365, 4366..4410, 4411..4455, 4456..4500, 4501..4545, 4546..4590, 4591..4635, 4636..4680, 4681..4725, 4726..4770, 4771..4815, 4816..4860, 4861..4905, 4906..4950, 4951..4995, 4996..5040, 5041..5085, 5086..5130, 5131..5175, 5176..5220, 5221..5265, 5266..5310, 5311..5355, 5356..5400, 5401..5445, 5446..5490, 5491..5535, 5536..5580, 5581..5625, 5626..5670, 5671..5715, 5716..5760, 5761..5805, 5806..5850, 5851..5895, 5896..5940, 5941..5985, 5986..6030, 6031..6075, 6076..6120, 6121..6165, 6166..6210, 6211..6255, 6256..6300, 6301..6345, 6346..6390, 6391..6435, 6436..6480, 6481..6525, 6526..6570, 6571..6615, 6616..6660, 6661..6705, 6706..6750, 6751..6795, 6796..6840, 6841..6885, 6886..6930, 6931..6975, 6976..7020, 7021..7065, 7066..7110, 7111..7155, 7156..7200, 7201..7245, 7246..7290, 7291..7335, 7336..7380, 7381..7425, 7426..7470, 7471..7515, 7516..7560, 7561..7605, 7606..7650, 7651..7695, 7696..7740, 7741..7785, 7786..7830, 7831..7875, 7876..7920, 7921..7965, 7966..8010, 8011..8055, 8056..8100, 8101..8145, 8146..8190, 8191..8235, 8236..8280, 8281..8325, 8326..8370, 8371..8415, 8416..8460, 8461..8505, 8506..8550, 8551..8595, 8596..8640, 8641..8685, 8686..8730, 8731..8775, 8776..8820, 8821..8865, 8866..8910, 8911..8955, 8956..9000, 9001..9045, 9046..9090, 9091..9135, 9136..9180, 9181..9225, 9226..9270, 9271..9315, 9316..9360, 9361..9405, 9406..9450, 9451..9495, 9496..9540, 9541..9585, 9586..9630, 9631..9675, 9676..9720, 9721..9765, 9766..9810, 9811..9855, 9856..9900, 9901..9945, 9946..9990, 9991..10035, 10036..10080, 10081..10125, 10126..10170, 10171..10215, 10216..10260, 10261..10305, 10306..10350, 10351..10395, 10396..10440, 10441..10485, 10486..10530, 10531..10575, 10576..10620, 10621..10665, 10666..10710, 10711..10755, 10756..10800, 10801..10845, 10846..10890, 10891..10935, 10936..10980, 10981..11025, 11026..11070, 11071..11115, 11116..11160, 11161..11205, 11206..11250, 11251..11295, 11296..11340, 11341..11385, 11386..11430, 11431..11475, 11476..11520, 11521..11565, 11566..11610, 11611..11655, 11656..11700, 11701..11745, 11746..11790, 11791..11835, 11836..11880, 11881..11925, 11926..11970, 11971..12015, 12016..12060, 12061..12105, 12106..12150, 12151..12195, 12196..12240, 12241..12285, 12286..12330, 12331..12375, 12376..12420, 12421..12465, 12466..12510, 12511..12555, 12556..12600, 12601..12645, 12646..12690, 12691..12735, 12736..12780, 12781..12825, 12826..12870, 12871..12915, 12916..12960, 12961..13005, 13006..13050, 13051..13095, 13096..13140, 13141..13185, 13186..13230, 13231..13275, 13276..13320, 13321..13365, 13366..13410, 13411..13455, 13456..13500, 13501..13545, 13546..13590, 13591..13635, 13636..13680, 13681..13725, 13726..13770, 13771..13815, 13816..13860, 13861..13905, 13906..13950, 13951..13995, 13996..14040, 14041..14085, 14086..14130, 14131..14175, 14176..14220, 14221..14265, 14266..14310, 14311..14355, 14356..14400, 14401..14445, 14446..14490, 14491..14535, 14536..14580, 14581..14625, 14626..14670, 14671..14715, 14716..14760, 14761..14805, 14806..14850, 14851..14895, 14896..14940, 14941..14985, 14986..15030, 15031..15075, 15076..15120, 15121..15165, 15166..15210, 15211..15255, 15256..15300, 15301..15345, 15346..15390, 15391..15435, 15436..15480, 15481..15525, 15526..15570, 15571..15615, 15616..15660, 15661..15705, 15706..15750, 15751..15795, 15796..15840, 15841..15885, 15886..15930, 15931..15975, 15976..16020, 16021..16065, 16066..16110, 16111..16155, 16156..16200, 16201..16245, 16246..16290, 16291..16335, 16336..16380, 16381..16425, 16426..16470, 16471..16515, 16516..16560, 16561..16605, 16606..16650, 16651..16695, 16696..16740, 16741..16785, 16786..16830, 16831..16875, 16876..16920, 16921..16965, 16966..17010, 17011..17055, 17056..17100, 17101..17145, 17146..17190, 17191..17235, 17236..17280, 17281..17325, 17326..17370, 17371..17415, 17416..17460, 17461..17505, 17506..17550, 17551..17595, 17596..17640, 17641..17685, 17686..17730, 17731..17775, 17776..17820, 17821..17865, 17866..17910, 17911..17955, 17956..18000, 18001..18045, 18046..18090, 18091..18135, 18136..18180, 18181..18225, 18226..18270, 18271..18315, 18316..18360, 18361..18405, 18406..18450, 18451..18495, 18496..18540, 18541..18585, 18586..18630, 18631..18675, 18676..18720, 18721..18765, 18766..18810, 18811..18855, 18856..18900, 18901..18945, 18946..18990, 18991..19035, 19036..19080, 19081..19125, 19126..19170, 19171..19215, 19216..19260, 19261..19305, 19306..19350, 19351..19395, 19396..19440, 19441..19485, 19486..19530, 19531..19575, 19576..19620, 19621..19665, 19666..19710, 19711..19755
|