SOLUTION: Let P(x)=x^3-2x^2-13x-10 a.determine whether x-5 is a factor if P(x). b.find another factor of P(x). c.find a complete factorization of P(x). d. Solve the equation P(x)=0.

Algebra ->  Customizable Word Problem Solvers  -> Mixtures -> SOLUTION: Let P(x)=x^3-2x^2-13x-10 a.determine whether x-5 is a factor if P(x). b.find another factor of P(x). c.find a complete factorization of P(x). d. Solve the equation P(x)=0.      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 985473: Let P(x)=x^3-2x^2-13x-10
a.determine whether x-5 is a factor if P(x).
b.find another factor of P(x).
c.find a complete factorization of P(x).
d. Solve the equation P(x)=0.

Answer by ikleyn(52786) About Me  (Show Source):
You can put this solution on YOUR website!

a.  To determine whether  x-5  is a factor of  P(x),  calculate  P(5),  i.e.  simply substitute the value of  5  into the polynomial.  You will get

P(5) = 5%5E3+-+2%2A5%5E2+-+13%2A5+-+10 = 125 - 50 - 65 - 10 = 0.

According wi the  Remainder Theorem  (see,  for example,  the lesson  Divisibility of polynomial f(x) by binomial x-a  in this site),  the binom  x-5  is a factor of the polynomial  P(x).


b.  Make the long division of the polynomial  P(x) = x%5E3-2x%5E2-13x-10  by  %28x-5%29.  You will get

x%5E3-2x%5E2-13x-10 = %28x-5%29.%28x%5E2+%2B+3x+%2B+2%29.

So,  the polynomial  %28x%5E2+%2B+3x+%2B+2%29  is another factor of the polynomial  P(x).


c.  The quadratic polynomial  x%5E2+%2B+3x+%2B+2  has the roots  x%5B1%5D = -1  and  x%5B2%5D = -2  (use the quadratic formula  Introduction into Quadratic Equations  or the Vieta's theorem  Solving quadratic equations without quadratic formula,  lessons in this site)

It implies that  x%5E2+%2B+3x+%2B+2 = %28x%2B1%29.%28x%2B2%29.

Therefore,

P(x) = %28x-5%29.%28x%2B1%29.%28x%2B2%29

is the complete factorization of the polynomial  P(x) = x%5E3-2x%5E2-13x-10.


d.  Since P(x) = x%5E3-2x%5E2-13x-10 = %28x-5%29.%28x%2B1%29.%28x%2B2%29,  the roots of the polynomial x%5E3-2x%5E2-13x-10 are 5, -1 and -2.


The solution is completed.