SOLUTION: Mr. Costa is filling planter boxes with soil. He has soil that is 23% sand, and he buys 6 pounds of a commercial potting soil that is 39% sand. He mixes some of his soil with the 6

Algebra ->  Customizable Word Problem Solvers  -> Mixtures -> SOLUTION: Mr. Costa is filling planter boxes with soil. He has soil that is 23% sand, and he buys 6 pounds of a commercial potting soil that is 39% sand. He mixes some of his soil with the 6      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 1156894: Mr. Costa is filling planter boxes with soil. He has soil that is 23% sand, and he buys 6 pounds of a commercial potting soil that is 39% sand. He mixes some of his soil with the 6 pounds of commercial potting soil. The resulting soil mixture is 35% sand. How many pounds of his soil did Mr. Costa use?
[A] 4 lb [B] 2 lb [C] 6 lb [D] 8 lb

Found 3 solutions by josgarithmetic, ikleyn, greenestamps:
Answer by josgarithmetic(39617) About Me  (Show Source):
You can put this solution on YOUR website!
MATERIALS             CONCENTRATION SAND%        QUANT.
He Has                               23            v
Commercial Potting                   39            6
Mixture wanted                       35           v+6

The description is itself in only one variable.

23v%2B39%2A6=35%28v%2B6%29
.
.
.

Answer by ikleyn(52786) About Me  (Show Source):
You can put this solution on YOUR website!
.

Let H be the amount of his soil of 23% sand.


The equation for the mixture

    0.23H + 0.39*6 = 0.35*(H + 6).


From the equation, express H and calculate

    H = %280.35%2A6+-+0.39%2A6%29%2F%280.23+-+0.35%29 = 2.


ANSWER. He should use 2 pounds of his soil.  (Option B)


Answer by greenestamps(13200) About Me  (Show Source):
You can put this solution on YOUR website!


Here is a quick non-algebraic way to solve two-part mixture problems like this.

Picture the three percentages on a number line: 23, 35, and 39. The target percentage 35 is 12/16 = 3/4 of the way from 23 to 39.

That means 3/4 of the mixture must be the 39% sand.

So the 6 pounds of 39% sand he is using is 3/4 of the mixture; the 23% sand is 1/4 of the mixture, which is 1/3 of 6 pounds, or 2 pounds.

Answer B