SOLUTION: If a 17-ft. ladder is leaning against a building. The base of the ladder is 7 feet from the base of the building. How high up the side of the building is the top of the ladder?
Algebra ->
Customizable Word Problem Solvers
-> Misc
-> SOLUTION: If a 17-ft. ladder is leaning against a building. The base of the ladder is 7 feet from the base of the building. How high up the side of the building is the top of the ladder?
Log On
Question 9616: If a 17-ft. ladder is leaning against a building. The base of the ladder is 7 feet from the base of the building. How high up the side of the building is the top of the ladder? Answer by DWL(56) (Show Source):
You can put this solution on YOUR website! This is a right triangle problem so we can use the Pythagorean Theorem that says:
We know the ladder is 17 Ft. Tall and leaning against the wall and the bottom of the ladder is 7 Ft out from the wall.
So we will make the height of the wall where the top of the ladder is = A
The distance (7 Ft.) from the wall out to the bottom of the ladder = B
and the length of the ladder (17 Ft.) = C
So A & B are legs on the right Triangle and C is the hypotenuse of the Triangle.
Now we can solve the problem.
We now put the numbers in for the variables we know and the equation looks like this:
Now we solve the equation, lets isolate A^2 by subtracting 7^2 from both sides: so this becomes
Now lets sqaure our numbers so: or
Now lets lets get rid of the square on the A by taking the square root of both sides so: =
Now we know the ladder is 15.49 Ft. up the side of the building.
Lets check it with our formula = = We will round up to 289. Close enough for goverment work.