SOLUTION: There is 123456789. You have 9 boxes (grids) you have to add the top with middle and get the answer at the bottom. You can only use one number only once

Algebra ->  Customizable Word Problem Solvers  -> Misc -> SOLUTION: There is 123456789. You have 9 boxes (grids) you have to add the top with middle and get the answer at the bottom. You can only use one number only once       Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 154966: There is 123456789. You have 9 boxes (grids) you have to add the top with middle and get the answer at the bottom. You can only use one number only once
Answer by Edwin McCravy(20054) About Me  (Show Source):
You can put this solution on YOUR website!

Here are all 168 ways to fill in the grid with the digits 1 thru 9, so
that the number in the top row plus the number in the middle row equals
the number in the bottom row.  Of course you can make 168 more ways by
swapping the numbers in the top two numbers.

124   125   127   127   128   128   129   129   129   129   134   135
659   739   359   368   367   439   357   438   654   735   658   729
783   864   486   495   495   567   486   567   783   864   792   864

138   138   139   139   142   142   143   145   146   146   152   152
429   654   428   725   596   695   586   692   583   592   487   784
567   792   567   864   738   837   729   837   729   738   639   936

154   154   154   157   157   158   159   159   162   162   163   167
629   638   782   329   482   634   327   624   387   783   782   328
783   792   936   486   639   792   486   783   549   945   945   495

167   168   173   173   175   176   182   182   182   182   182   182
382   327   286   295   293   283   367   394   457   493   754   763
549   495   459   468   468   459   549   576   639   675   936   945

183   183   183   183   184   184   186   186   187   187   192   192
276   492   546   762   392   752   273   543   362   452   384   483
459   675   729   945   576   936   459   729   549   639   576   675

192   192   193   193   194   195   195   196   214   214   215   215
546   645   275   482   382   273   642   542   569   659   478   748
738   837   468   675   576   468   837   738   783   873   693   963

216   216   218   218   218   218   218   218   219   219   219   219
378   738   349   376   439   475   736   745   348   438   564   654
594   954   567   594   657   693   954   963   567   657   783   873

234   235   236   236   237   238   238   239   241   243   243   245
657   746   718   745   654   419   716   418   596   576   675   673
891   981   954   981   891   657   954   657   837   819   918   918

245   245   246   246   246   248   248   249   251   254   254   257
718   736   573   591   735   319   715   318   397   619   637   391
963   981   819   837   981   567   963   567   648   873   891   648

257   259   264   269   271   271   273   273   273   273   275   275
634   614   519   514   593   683   546   591   645   681   418   643
891   873   783   783   864   954   819   864   918   954   693   918

276   276   278   278   281   281   283   284   291   291   291   291
318   543   316   415   394   673   671   391   357   384   546   573
594   819   594   693   675   954   954   675   648   675   837   864

293   294   296   297   314   317   317   318   318   319   324   324
571   381   541   351   658   529   628   627   654   527   567   657
864   675   837   648   972   846   945   945   972   846   891   981

327   327   327   327   328   329   341   342   346   346   352   354
519   564   618   654   617   517   586   576   572   581   467   618
846   891   945   981   945   846   927   918   918   927   819   972

354   357   357   358   362   364   367   367   372   376   381   386
627   462   624   614   457   527   452   524   546   542   546   541
981   819   981   972   819   891   819   891   918   918   927   927

Edwin