Hi
Need some help in solving this beauty. Circle A is shaded and lies inside circle B. The radius of B is 4 inches more than the radius of A. What is the radius of each if the unshaded area is.
Twice as much as the shaded area
28pi square inches more than the shaded area
16pi square inches more than twice as much as the shaded area.
Thanks
Let radius of A be r
Then radius of B is r + 4
a.) What is the radius of each if the unshaded area is twice as much as the shaded area?
Unshaded area (see above) =
Unshaded area (GIVEN): 2 * shaded area, or
Therefore,
------- Factoring out GCF, 2π
Solve, using the quadratic equation formula or by completing the square.
Select the POSITIVE “r” ROOT to get: Radius of smaller/shaded circle, or
Radius of larger circle:
b.) What is the radius of each if the unshaded area is 28π sq. inches more than the shaded area?
Unshaded area (see above) =
Unshaded area (GIVEN): 28π + shaded area, or
Therefore,
------- Factoring out GCF, π
0 = (r - 2)(r - 6)
r = 2 OR r = 6
c.) What’s the radius of each if unshaded area is 16π sq. inches more than twice the shaded area?
Unshaded area (see above) =
Unshaded area (GIVEN): 16π + 2 * shaded area, or
Therefore,
------- Factoring out GCF, 2π
0 = r(r - 4)
r - 4 = 0 OR r = 0 (ignore)
r = 4