Lesson Solved problems on volume of spheres
Algebra
->
Customizable Word Problem Solvers
->
Geometry
-> Lesson Solved problems on volume of spheres
Log On
Ad:
Over 600 Algebra Word Problems at edhelper.com
Word Problems: Geometry
Word
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'Solved problems on volume of spheres'
This Lesson (Solved problems on volume of spheres)
was created by by
ikleyn(52787)
:
View Source
,
Show
About ikleyn
:
<H2>Solved problems on volume of spheres</H2> In this lesson you will find typical solved problems on volume of spheres. The theoretical base for these problems is the lesson <A HREF=http://www.algebra.com/algebra/homework/Volume/Volume-of-spheres.lesson>Volume of spheres</A> under the topic <B>Volume, metric volume</B> of the section <B>Geometry</B> in this site. <H3>Problem 1</H3>Find the volume of a sphere if its radius is of 3 cm. <B>Solution</B> The volume of the sphere is {{{4/3}}}{{{pi*r^3}}} = {{{4/3}}}{{{pi*3^3}}} = {{{36*pi}}} = {{{36*3.14159}}} = 113.097 {{{cm^3}}} (approximately). <B>Answer</B>. The volume of the sphere is 113.097 {{{cm^3}}} (approximately). <H3>Problem 2</H3>Find the volume of a composite body comprised of a right circular cylinder and a hemisphere attached center-to-center to one of the cylinder bases (<B>Figure 1</B>) if both the cylinder diameter and the hemisphere diameter are of 10 cm, and the cylinder height is of 20 cm. <TABLE> <TR> <TD> <B>Solution</B> The volume of the composite body under consideration is the sum of the volume of the cylinder {{{pi}}}{{{r^2}}}{{{h}}} and the volume of the hemisphere {{{2/3}}}{{{pi}}}{{{r^3}}}. So, the volume of the composite body is equal to {{{V}}} = {{{pi}}}{{{r^2}}}{{{h}}} + {{{2/3}}}{{{pi}}}{{{r^3}}} = {{{pi}}}*({{{r^2*h + (2/3)*r^3}}}) = {{{pi*(5^2*20 + (2/3)*5^3)}}} = = 3.14159*583.33 = 1832.59{{{cm^3}}} (approximately). </TD> <TD> {{{drawing( 210, 195, -3.5, 3.5, -1.0, 5.5, ellipse( 0.5, 3.5, 3.0, 1.0), ellipse( 0.5, 0.0, 3.0, 1.0), line( -1, 3.5, -1, 0.0), line( 2, 3.5, 2, 0.0), arc ( 0.5, 3.5, 3.00, 3.00, 180, 360), arc ( 0.5, 3.5, 3.06, 3.06, 180, 360) )}}} <B>Figure 1</B>. To the <B>Problem 2</B> </TD> </TR> </TABLE> <B>Answer</B>. The volume of the composite body under consideration is 1832.59 {{{cm^3}}} (approximately). <H3>Problem 3</H3>Find the volume of a composite body comprised of a cone and a hemisphere attached center-to-center to the cone base (<B>Figure 2</B>) if both the cone base diameter and the hemisphere diameter are of 10 cm and the cone height is of 5 cm. <TABLE> <TR> <TD> <B>Solution</B> The volume of the composite body under consideration is the sum of the volume of the cone {{{1/3}}}{{{pi}}}{{{r^2}}}{{{h}}} and the volume of the hemisphere {{{2/3}}}{{{pi}}}{{{r^3}}}. So, the total volume of the composite body is equal to {{{S}}} = {{{1/3}}}{{{pi}}}{{{r^2}}}{{{h}}} + {{{2/3}}}{{{pi}}}{{{r^3}}} = {{{1/3}}}{{{pi*r^2}}}*{{{(h + 2r)}}} = = {{{1/3}}}{{{pi*5^2}}}*({{{5 + 2*5)}}}) = {{{1/3}}}{{{pi*25}}}*{{{15}}} = {{{125*pi}}} = 125*3.14159 = = 392.7 {{{cm^3}}} (approximately). </TD> <TD> {{{drawing( 195, 195, -3.0, 3.5, -1.0, 5.5, ellipse( 0.5, 3.5, 3.0, 1.0), line( -1.0, 3.5, 0.5, 0.0), line( 2.0, 3.5, 0.5, 0.0), arc ( 0.5, 3.5, 3.00, 3.00, 180, 360), arc ( 0.5, 3.5, 3.06, 3.06, 180, 360) )}}} <B>Figure 2</B>. To the <B>Problem 3</B> </TD> </TR> </TABLE> <B>Answer</B>. The volume of the composite body under consideration is 392.7 {{{cm^3}}} (approximately). <H3>Problem 4</H3>Find the volume of a composite body comprised of a cube and a hemisphere attached center-to-center to one of the cube faces (<B>Figure 3</B>) if both the cube edge measure and the hemisphere diameter are of 10 cm. <TABLE> <TR> <TD> <B>Solution</B> The volume of the composite body under consideration is the sum of the volume of the cube {{{a^3}}} plus the volume of the hemisphere {{{2/3}}}{{{pi}}}{{{r^3}}}, where {{{r}}} = {{{10/2}}} = 5 cm. So, the volume of the given composite body is equal to {{{V}}} = {{{a^3}}} + {{{2/3}}}{{{pi}}}{{{(a/2)^3}}} = {{{10^3}}} + {{{2/3}}}{{{3.14159*5^3}}} = 1000 + 261.8 = 1261.8 {{{cm^3}}} (approximately). </TD> <TD> {{{drawing( 180, 180, -2.5, 3.5, -0.5, 5.5, line ( 0.0, 0.0, 3.0, 0.0), line ( 0.0, 0.0, 0.0, 3.0), line ( 0.0, 0.0, -2.0, 0.8), line ( 0.0, 3.0, 3.0, 3.0), line ( 3.0, 3.0, 3.0, 0.0), line ( 0.0, 3.0, -2.0, 3.8), line ( -2.0, 3.8, 1.0, 3.8), line ( -2.0, 3.8, -2.0, 0.8), green(line ( 1.0, 3.8, 1.0, 0.8)), line ( 1.0, 3.8, 3.0, 3.0), green(line ( -2.0, 0.8, 1.0, 0.8)), green(line ( 1.0, 0.8, 3.0, 0.0)), locate( 1.2, 0.1, a), locate(-1.5, 0.6, a), locate(-0.4, 2.1, a), ellipse( 0.52, 3.43, 2.54, 0.77), arc ( 0.52, 3.43, 2.54, 2.54, 175, 354) )}}} <B>Figure 3</B>. To the <B>Problem 4</B> </TD> </TR> </TABLE> <B>Answer</B>. The volume of the composite body under consideration is 1261.8 {{{cm^3}}} (approximately). <H3>Problem 5</H3>Find the volume of the sphere inscribed in a cone if the base diameter of the cone is of 30 cm and the height of the cone is of 36 cm (<B>Figure 4a</B>). <TABLE> <TR> <TD> <B>Solution</B> <B>Figure 4a</B> shows <B>3D</B> view of the cone with the inscribed sphere. <B>Figure 4b</B> shows the axial section of this cone and the inscribed sphere as the isosceles triangle with the inscribed circle. The radius of the inscribed sphere in the cone in the <B>Figure 4a</B> is the same as the radius of the inscribed circle in the triangle in the <B>Figure 4b</B>. So, instead of determining the radius of the sphere we will find the radius of the inscribed circle. For it, use the formula {{{r}}} = {{{2S/P}}}, where {{{r}}} is the radius of the inscribed circle in a triangle, {{{S}}} is the area of the triangle and {{{P}}} is the perimeter of the triangle. The proof of this formula is in the lesson <A HREF=http://www.algebra.com/algebra/homework/Surface-area/Proof-of-the-formula-for-the-area-of-a-triangle-via-the-radius-of-the-inscribed-circle.lesson>Proof of the formula for the area of a triangle via the radius of the inscribed circle</A> under the topic <B>Area and surface area</B> of the section <B>Geometry</B> in this site. </TD> <TD> {{{drawing( 210, 249, -3.5, 3.5, -3.8, 4.5, ellipse (0.0, -2.0, 6.0, 3.0), green(ellipse (0.0, 0.8, 3.2, 1.6)), line ( -2.75, -1.5, -1.375, 1.25), line ( 2.82, -1.5, 1.410, 1.25), line ( -1.375, 1.25, 0.0, 4.0), line ( 1.410, 1.25, 0.0, 4.0), green(line (0, -2, 0, 4)), circle( 0.0, -0.12, 1.88, 1.88) )}}} <B>Figure 4a</B>. To the <B>Problem 5</B> </TD> <TD> {{{drawing( 210, 249, -3.5, 3.5, -3.8, 4.5, line (-3.0, -2.0, 3.0, -2.0), line ( -3.0, -2.0, 0.0, 4.0), line ( 3.0, -2.0, 0.0, 4.0), green(line (0, -2, 0, 4)), circle( 0.0, -0.12, 1.88, 1.88), line ( 0.0, -0.2, -1.6, 0.8), line ( 0.0, -0.2, 1.6, 0.8), line ( 0.0, -0.2, 0.0, -2.0) )}}} <B>Figure 4b</B>. To the solution of the <B>Problem 5</B> </TD> </TR> </TABLE>For our isosceles triangle, we have {{{l}}} = {{{sqrt((30/2)^2 + 36^2)}}} = 39 cm for its lateral side length, {{{P}}} = {{{39 + 39 + 30}}} = 108 cm for the perimeter and {{{S}}} = {{{1/2}}}{{{30*36}}} = 540 {{{cm^2}}} for the area. Therefore, the radius of the inscribed circle is {{{r}}} = {{{2*540/108}}} = {{{10}}} {{{cm}}} in accordance with the formula above. Hence, the volume of the sphere inscribed in the cone is {{{4/3}}}{{{pi}}}{{{r^3}}} = {{{4/3}}}{{{pi*10^3}}} = {{{1333.33*pi}}} = 1333.33*3.14159 = 4188.79 {{{cm^3}}}. <B>Answer</B>. The volume of the sphere inscribed in the cone is 4188.79 {{{cm^3}}} (approximately). My lessons on volume of spheres and other 3D solid bodies in this site are <TABLE> <TR> <TD> <B>Lessons on volume of prisms</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/_Volume-of-prisms.lesson>Volume of prisms</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-prisms.lesson>Solved problems on volume of prisms</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-volume-of-prisms.lesson>Overview of lessons on volume of prisms</A> </TD> <TD> <B>Lessons on volume of pyramids</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/_Volume-of-pyramids.lesson>Volume of pyramids</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-pyramids.lesson>Solved problems on volume of pyramids</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-volume-of-pyramids.lesson>Overview of lessons on volume of pyramids</A> </TD> </TR> </Table><TABLE> <TR> <TD> <B>Lessons on volume of cylinders</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/_Volume-of-cylinders.lesson>Volume of cylinders</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-volume-of-cylinders.lesson>Solved problems on volume of cylinders</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-Volume-of-cylinders.lesson>Overview of lessons on volume of cylinders</A> </TD> <TD> <B>Lessons on volume of cones</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/Volume-of-cones.lesson>Volume of cones</A> <A HREF=http://www.algebra.com/algebra/homework/word/geometry/Solved-problems-on-Volume-of-cones.lesson>Solved problems on volume of cones</A> <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-Volume-of-cones.lesson>Overview of lessons on volume of cones</A> </TD> <TD> <B>Lessons on volume of spheres</B> <A HREF=http://www.algebra.com/algebra/homework/Volume/Volume-of-spheres.lesson>Volume of spheres</A> Solved problems on volume of spheres <A HREF=http://www.algebra.com/algebra/homework/Volume/OVERVIEW-of-LESSONS-on-Volume-of-spheres.lesson>Overview of lessons on volume of spheres</A> </TD> </TR> </Table> To navigate over all topics/lessons of the Online Geometry Textbook use this file/link <A HREF=https://www.algebra.com/algebra/homework/Triangles/GEOMETRY-your-online-textbook.lesson>GEOMETRY - YOUR ONLINE TEXTBOOK</A>.