SOLUTION: The section that I am on in my class is over contradiction. The equation is Show that neither x=1 or x=-1 can be solutions to the equation ax^2+bx+a=0 where a and b are integers w
Algebra ->
Customizable Word Problem Solvers
-> Geometry
-> SOLUTION: The section that I am on in my class is over contradiction. The equation is Show that neither x=1 or x=-1 can be solutions to the equation ax^2+bx+a=0 where a and b are integers w
Log On
Question 32196: The section that I am on in my class is over contradiction. The equation is Show that neither x=1 or x=-1 can be solutions to the equation ax^2+bx+a=0 where a and b are integers with b odd. Answer by mbarugel(146) (Show Source):
You can put this solution on YOUR website! Hello!
Try plugging x = 1 into the equation. You get:
However, b is odd, but 2a is even (two multiplied by any number yields an even number). Therefore, x=1 can't be a solution to the equation.
When plugging x = -1, we get:
Using the same reasoning, we conclude that x=-1 can't be a solution of your equation.