SOLUTION: The área of a square is 36 square feet. Which of the following measures is closets to the length of its diagonal?

Algebra ->  Customizable Word Problem Solvers  -> Geometry -> SOLUTION: The área of a square is 36 square feet. Which of the following measures is closets to the length of its diagonal?      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 1195290: The área of a square is 36 square feet. Which of the following measures is closets to the length of its diagonal?
Found 3 solutions by Theo, math_tutor2020, MathLover1:
Answer by Theo(13342) About Me  (Show Source):
You can put this solution on YOUR website!
area of the square is 36.
that would be 6 on each side because 6*6 = 6^2 = 36
the (diagonal of the square) squared is equal to 6^2 + 6^2 = 72.
that makes the diagonal equal to sqrt(72).
sqrt(72) is equal to 6 * sqrt(2).
in decimal form, the diagonal is therefore equal to 8.48528.
round to integer, it is closer to 8.
round to 1 decimal place, it is closer to 8.5.
round to 2 decimal places, it is closer to 8.49.
actually, it is equally close to 8.48 or 8.49, even though the rules tell you to round to the next higher integer if the third decimal place is a 5.
take your pick, depending on what your selections are.
let me know if you need further assistance.
theo



Answer by math_tutor2020(3816) About Me  (Show Source):
You can put this solution on YOUR website!

The area is 36 square feet, so the side length is sqrt%2836%29+=+6 feet.
As a check: 6*6 = 36

Refer to the diagram below.
a = 6, b = 6 are the legs of the right triangle.
c = hypotenuse


Apply the pythagorean theorem
a%5E2%2Bb%5E2+=+c%5E2

c+=+sqrt%28a%5E2%2Bb%5E2%29

c+=+sqrt%286%5E2%2B6%5E2%29

c+=+sqrt%282%2A6%5E2%29

c+=+sqrt%282%29%2Asqrt%286%5E2%29

c+=+sqrt%282%29%2A6

c+=+6%2Asqrt%282%29

c+=+8.48528 approximately

The diagonal is exactly 6%2Asqrt%282%29 feet long, or approximately 8.48528 feet
Round the decimal value however your teacher instructs.

Answer by MathLover1(20849) About Me  (Show Source):
You can put this solution on YOUR website!

the area of a square is +36ft%5E2
side of a square is a
then
a%5E2=+36ft%5E2
a=+6ft

the length of its diagonal:
d%5E2=a%5E2%2Ba%5E2
d%5E2=2a%5E2
d%5E2=2%286ft%29%5E2
d=6sqrt%282%29ft+
d=6sqrt%282%29ft+ exactly
d=8.5ft approximately