SOLUTION: What is the ratio of x and y if 3x = 4y + 3k and 2x +7y = 31k.

Algebra ->  Customizable Word Problem Solvers  -> Geometry -> SOLUTION: What is the ratio of x and y if 3x = 4y + 3k and 2x +7y = 31k.      Log On

Ad: Over 600 Algebra Word Problems at edhelper.com


   



Question 1101987: What is the ratio of x and y if 3x = 4y + 3k and
2x +7y = 31k.

Answer by ikleyn(52778) About Me  (Show Source):
You can put this solution on YOUR website!
.
You have these two equations

3x = 4y + 3k,      (1)
2x +7y = 31k.      (2)


Start writing them in the standard form:

3x - 4y =  3k,     (3)
2x + 7y = 31k.     (4)


Multiply eq(3) by 2 (both sides). Multiply eq(4) by 3 (both sides). You will get

6x -  8y =  6k,    (5)
6x + 21y = 93k.    (6)


Now subtract eq(5) from eq(6). The terms "6x" and "6x" will cancel each other, and you will get

21y + 8y = 93k - 6k  ====>  29y = 87k  ====>  y = %2887%2F29%29%2Ak = 3k


Then from eq(2)  2x = 31k - 7*(3k) = 31k - 21k = 10k.  Hence,  x = %2810%2F2%29%2Ak = 5k.


Now the ratio  x%2Fy  under the question is equal to %285k%29%2F%283k%29 = 5%2F3.

Solved.

In the solution, I applied the Elimination method.