SOLUTION: solve the initial value problem:
please help with this differential equation
{{{(dy)/(dx)}}}{{{""=""}}}{{{(e^(4x)+1)/(e^(4x)+4x+4)}}} (x>-1) y=1 when x=0
I have y= {{{(
(x>-1) y=1 when x=0
Let u = e4x + 4x + 4
du = (4e4x + 4)dx
du = 4(e4x + 1)dx
dx = ln|u| + C
y = ln|e4x + 4x + 4| + C
And since x > -1 we can dispense with the absolute value:
y = ln(e4x + 4x + 4) + C
Substitute the initial condition y=1 when x=0
1 = ln(e4(0) + 4(0) + 4) + C
1 = ln(1 + 0 + 4) + C
1 = ln(5) + C
1 - ln(5) = C
Substitute for C
y = ln(e4x + 4x + 4) + C
y = ln(e4x + 4x + 4) + 1 - ln(5)
You can leave it like that or
Change the 1 to so you can factor out
y = ln(e4x + 4x + 4) + - ln(5)
y = [ln(e4x + 4x + 4) + 4 - ln(5)]
Edwin