SOLUTION: determine the coordinates of the intersection of the two lines y+2x=3 y-x=2

Algebra ->  Quadratic Equations and Parabolas  -> Quadratic Equations Lessons  -> Quadratic Equation Lesson -> SOLUTION: determine the coordinates of the intersection of the two lines y+2x=3 y-x=2       Log On


   



Question 985159: determine the coordinates of the intersection of the two lines y+2x=3 y-x=2

Answer by srinivas.g(540) About Me  (Show Source):
You can put this solution on YOUR website!
given lines
y+2x=3 y-x =2
on rearranging
2x+y=3
-x+y=2
Solved by pluggable solver: SOLVE linear system by SUBSTITUTION
Solve:
+system%28+%0D%0A++++2%5Cx+%2B+1%5Cy+=+3%2C%0D%0A++++-1%5Cx+%2B+1%5Cy+=+2+%29%0D%0A++We'll use substitution. After moving 1*y to the right, we get:
2%2Ax+=+3+-+1%2Ay, or x+=+3%2F2+-+1%2Ay%2F2. Substitute that
into another equation:
-1%2A%283%2F2+-+1%2Ay%2F2%29+%2B+1%5Cy+=+2 and simplify: So, we know that y=2.33333333333333. Since x+=+3%2F2+-+1%2Ay%2F2, x=0.333333333333335.

Answer: system%28+x=0.333333333333335%2C+y=2.33333333333333+%29.