You can
put this solution on YOUR website!
3x² + 490x + 6000
Use the "ac" method:
Multiply 3 by 6000
Get 18000
We write all the factor pairs of 18000
as well as the sum of the factor pairs,
and see if any give you a sum of 490
18000 × 1; 18000 + 1 = 18001
9000 × 2; 9000 + 2 = 9002
6000 × 3; 6000 + 3 = 6003
4500 × 4; 4500 + 4 = 4504
3600 × 5; 3600 + 5 = 3605
3000 × 6; 3000 + 6 = 3006
2250 × 8; 2250 + 8 = 2258
2000 × 9; 2000 + 9 = 2009
1800 × 10; 1800 + 10 = 1810
1500 × 12; 1500 + 12 = 1512
1200 × 15; 1200 + 15 = 1215
1125 × 16; 1125 + 16 = 1141
1000 × 18; 1000 + 18 = 1018
900 × 20; 900 + 20 = 920
750 × 24; 750 + 24 = 774
720 × 25; 720 + 25 = 745
600 × 30; 600 + 30 = 630
500 × 36; 500 + 36 = 536
450 × 40; 450 + 40 = 490
400 × 45; 400 + 45 = 445
375 × 48; 375 + 48 = 423
360 × 50; 360 + 50 = 410
300 × 60; 300 + 60 = 360
250 × 72; 250 + 72 = 322
240 × 75; 240 + 75 = 315
225 × 80; 225 + 80 = 305
200 × 90; 200 + 90 = 290
180 × 100; 180 + 100 = 280
150 × 120; 150 + 120 = 270
144 × 125; 144 + 125 = 269
and we find that there is indeed one pair of factors, 450 and 40
with sum 490.
So we write
3x² + 490x + 6000
as
3x² + 450x + 40x + 6000
Then we factor 3x out of the first two terms and 40 out
of the last two terms:
3x(x + 150) + 40(x + 150)
Next we factor out common factor of (x + 150)
(x + 150)(3x + 40)
What a horrible problem!
Edwin