SOLUTION: How do I solve this equation? {{{10x^4-19x^2+6=0}}}

Algebra ->  Quadratic Equations and Parabolas  -> Quadratic Equations Lessons  -> Quadratic Equation Lesson -> SOLUTION: How do I solve this equation? {{{10x^4-19x^2+6=0}}}      Log On


   



Question 197385: How do I solve this equation?
10x%5E4-19x%5E2%2B6=0

Found 2 solutions by Alan3354, RAY100:
Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
10x%5E4-19x%5E2%2B6=0
%285x%5E2+-+2%29%2A%282x%5E2+-+3%29+=+0
x%5E2+=+2%2F5,+x%5E2+=+3%2F2
x = ± 2sqrt(5)/5
x = ± 3sqrt(2)/2


Answer by RAY100(1637) About Me  (Show Source):
You can put this solution on YOUR website!
10x^4 -19x^2 +6 = 0
.
Let y=x^2
.
10 y^2 -19y + 6 = 0
.
(5y-2)(2y-3) = 0
.
y= 2/5, 3/2
.
but y=x^2
.
x^2 = 2/5 , 3/2
.
x = sqrt 2/5 = +/- .632,,,,,or y= sqrt 3/2 = +/- 1.225
.
checking
10(.632^4) -19(.632^2) + 6 = 0,,,ok
10(1.225^4) -19(1.225^2) +6 = 0 ,,,ok