SOLUTION: Solve the roots of the equation by completing the square. Leave all answers in exact values with the most simplified form: 3x^2 + 2x + 7/3 = 0

Algebra ->  Quadratic Equations and Parabolas  -> Quadratic Equations Lessons  -> Quadratic Equation Lesson -> SOLUTION: Solve the roots of the equation by completing the square. Leave all answers in exact values with the most simplified form: 3x^2 + 2x + 7/3 = 0      Log On


   



Question 1189159: Solve the roots of the equation by completing the square. Leave all answers in exact values with the most simplified form:
3x^2 + 2x + 7/3 = 0

Found 2 solutions by Theo, MathTherapy:
Answer by Theo(13342) About Me  (Show Source):
You can put this solution on YOUR website!
i solved by completing the square as shown in the following worksheet.



step 1 was just copying down the equation.

step 2 was dividing both sides of the equation by 3 to make the coefficient of the x^2 term equal to 1.

step 3 was subtracting 7/9 from both sides of the equation to get the constant term on the right side of the equation.

step 4 is where the magic occurs.
the equation at the start of this step is x^2 + 2/3 * x = -7/9.
you take the square root of the x^2 term and 1/2 the coefficient of the 2/3 * x term to get:
(x + 2/6)^2 - (2/6)^2 = -7/9
the reason you are subtracting (2/6)^2 is because:
(x + 2/6)^2 is equal to x^2 + (4/6)x + (2/6)^2
since you only want x^2 + (4/6)x, you need to subtract (2/6)^2 to get:
(x + 2/6)^2 = x^2 + (4/6)x + (2/6)^2 - (2/6)^2 which cancels out the (2/6)^2 so you are left with:
(x^2 + 2/6)^2 - (2/6)^2 = x^2 + (4/6)x.
you then add (2/6)^2 to both sides of the equation to get:
(x + 2/6)^2 = -7/9 + (2/6)^2
that's the equation you see in step 4, which was the result of what i showed you above.

the instructions you will most likely see would be:
x^2 + (2/6)x = -7/9 becomes:
(x + 2/3)^2 = -7/9 + (2/6)^2

step 5 simplifies the equation as shown below:
(x + 2/6)^2 = -7/9 + (2/6)^2 becomes:
(x + 2/6)^2 = -7/9 + 4/36 which becomes:
(x + 2/6)^2 = -7/9 + 1/9 which becomes:
(x + 2/6)^2 = -6/9 which becomes:
(x + 2/6)^2 = -2/3

step 6 take the square root of both sides of the equation to get:
(x + 2/6)^2 = -2/3 becomes:
x + 2/6 = plus or minus sqrt(-2/3)

step 7 subtracts 2/6 from both sides of the equation to get:
x = -2/6 plus or minus sqrt(-2/3)

since sqrt(-2/3) is equal to sqrt(2/3 * -1) which is equal to sqrt(2/3) * sqrt(-1), and since sqrt(-1) is equal to i, your answer becomes;

x = -2/6 plus or minus sqrt(2/3) * i.

that's your answer before converting everything to decimal.
if they want the answer in that form, you're done.

if they neet it to be in decimal format, then:

step 7 converts x = -2/6 plus or minus sqrt(-2/3) to:
x = -.3333 plus or minus .8165 * i, when rounded to 4 decimal places.

i checked with an online quadratic equation solver at .

it gave me the same answer, confirming that i did it right, as shown below:



their answer not rounded to 4 decimal places.
it is a more complete answer, probably rounded to 6 decimal places..
you may round it as required.

here's a reference on how to solve a quadratic equation by completing the square.

https://www.purplemath.com/modules/sqrquad.htm

let me know if you have any questions.

theo



Answer by MathTherapy(10551) About Me  (Show Source):
You can put this solution on YOUR website!
Solve the roots of the equation by completing the square. Leave all answers in exact values with the most simplified form:
3x^2 + 2x + 7/3 = 0
matrix%281%2C3%2C+3x%5E2+%2B+2x+%2B+7%2F3%2C+%22=%22%2C+0%29
matrix%281%2C3%2C+3%28x%5E2+%2B+%282%2F3%29x+%2B+7%2F9%29%2C+%22=%22%2C+3%280%29%29 -- Factoring out 3, to make the coefficient on the x2, 1
matrix%281%2C3%2C+x%5E2+%2B+%282%2F3%29x+%2B+7%2F9%2C+%22=%22%2C+0%29
matrix%281%2C3%2C+x%5E2+%2B+%282%2F3%29x%2C+%22=%22%2C+-+7%2F9%29 ---------- Subtracting 7%2F9 from each side, to move constant to right of equals sign
 ------ Taking , squaring it, and then ADDING the result to both sides of equation
matrix%281%2C3%2C+%28x+%2B+1%2F3%29%5E2%2C+%22=%22%2C+-+7%2F9+%2B+1%2F9%29

 ------- Taking square root of both sides
matrix%281%2C3%2C+x+%2B+1%2F3%2C+%22=%22%2C+%22+%22+%2B-sqrt%28%282%2F3%29+%2A+-+1%29%29 
matrix%281%2C3%2C+x+%2B+1%2F3%2C+%22=%22%2C+%22+%22+%2B-sqrt%282%2F3%29i%29 

 

Those are the EXACT solutions. Accept no other answers.