SOLUTION: Determine the quadratic function which has maximum point (-1,8 ) and x-intercept 3.Express the function in transformational form.

Algebra ->  Quadratic Equations and Parabolas  -> Quadratic Equations Lessons  -> Quadratic Equation Lesson -> SOLUTION: Determine the quadratic function which has maximum point (-1,8 ) and x-intercept 3.Express the function in transformational form.       Log On


   



Question 118363: Determine the quadratic function which has maximum point (-1,8 ) and x-intercept 3.Express the function in transformational form.
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
Determine the quadratic function which has maximum point (-1,8 ) and x-intercept 3.Express the function in transformational form.
-------------------
If max occurs at (-1,8), -b/2a - -1 ; b = 2a
--------------
You also have the point (3,0)
-----------------------
EQUATION form
y = ax^2+bx+c
Substituting b = 2a you get:
y = ax^2+2ax+c
Substituting (3,0) you get:
a(3^2)+2*a*3 + c = 0
9a+6a +c = 0
15a+c=0
--------
Substituting (-1,8) you get:
a((-1)^2)+2*a*-1+c = 8
a-2a+c = 8
-a+c = 8
------------
Subtracting -a+c=8 from 15a+c=0 you get:
16a = -8
a = -1/2
Then b = -1
-----------------
Substituting a=-1/
2 into -a+c=8 you get:
(1/2)+c = 8
c = 15/2
---------------
QUADRATIC EQUATION:
y = (-1/2)x^2-x+(15/2)
===========================
Graph to Check:
graph%28400%2C300%2C-10%2C10%2C-10%2C10%2C%28-1%2F2%29x%5E2-x%2B%2815%2F2%29%29
===========================
Cheers,
Stan H.