SOLUTION: I would like your help in determining the possible roots to the equation: -x^4-5x^2-x+7=0. Judging from the sign changes, there appears to be 1 positive root. And 1 negative roo

Algebra ->  Quadratic Equations and Parabolas  -> Quadratic Equations Lessons -> SOLUTION: I would like your help in determining the possible roots to the equation: -x^4-5x^2-x+7=0. Judging from the sign changes, there appears to be 1 positive root. And 1 negative roo      Log On


   



Question 55889This question is from textbook college algebra
: I would like your help in determining the possible roots to the equation:
-x^4-5x^2-x+7=0. Judging from the sign changes, there appears to be 1 positive root. And 1 negative root. Does that mean there could be 3 imaginary roots?
This question is from textbook college algebra

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
-x^4-5x^2-x+7=0.
Since the coefficiens add up to 0 one is a root.
Divide your polynomia by (x-1) and get -x^3-x^2-6x+7
The possible rational zeroes of this are +-7, +-1.
Graphing your polynomial I find an "approximate" zero
at -1.137117... but I know of no way to find the
complex zeroes. Maybe somebody else will help you.
Cheers,
Stan H.