SOLUTION: How do I solve this quadratic equation? 2x^2+12x+19 I need to find the leftmost x-int and the right most x-int for the graph of this equation

Algebra ->  Quadratic Equations and Parabolas  -> Quadratic Equations Lessons -> SOLUTION: How do I solve this quadratic equation? 2x^2+12x+19 I need to find the leftmost x-int and the right most x-int for the graph of this equation      Log On


   



Question 217164: How do I solve this quadratic equation?
2x^2+12x+19
I need to find the leftmost x-int and the right most x-int for the graph of this equation

Answer by ankor@dixie-net.com(22740) About Me  (Show Source):
You can put this solution on YOUR website!
2x^2 + 12x + 19
:
There are no real roots to this equation, (no x intercepts)
This can be shown by the discriminant: D = a^2 - 4*a*c
In this equation: a = 2; b = 12; c = 19
;
D = 12^2 - 4*2*19
D = 144 - 152
D = -8; a neg quantity means no real roots
;
The graph:
+graph%28+300%2C+200%2C+-6%2C+5%2C+-10%2C+10%2C+2x%5E2%2B12x%2B19%29+