SOLUTION: (x+y)/(3a-b)=(y+z)/(3b-c)=(z+x)/(3c-a) prove that (x+y+z)/(a+b+c)=(ax+by+cz)/(a^2+b^2+c^2)
Algebra
->
Proportions
->
Lessons
-> SOLUTION: (x+y)/(3a-b)=(y+z)/(3b-c)=(z+x)/(3c-a) prove that (x+y+z)/(a+b+c)=(ax+by+cz)/(a^2+b^2+c^2)
Log On
Algebra: Proportions
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Proportions
Question 481709
:
(x+y)/(3a-b)=(y+z)/(3b-c)=(z+x)/(3c-a)
prove that
(x+y+z)/(a+b+c)=(ax+by+cz)/(a^2+b^2+c^2)
Answer by
mananth(16946)
(
Show Source
):
You can
put this solution on YOUR website!
You have to apply the rule of identities.
a1/b1 = a2/b2 = a3/b3
= (a1+a2+a3)/(b1+b2+b3) ---- 1
= (a1-a2+a3)/(b1-b2+b3) ---- 2
= (a2-a3+a1)/(b2-b3+b1) ---- 3
= (a3-a1+a2)/(b3-b1+b2) ---- 4
..............
apply to the given equations:
=
----using (1)
=
=
---- by (2)
=
=
=
---- result A
=
---- by (3)
=
=
=
---- result B
=
---- by(4)
=
=
=
---- result C
=
-------- by adding results A,B,C
=
m.ananth@hotmail.ca