SOLUTION: The perimeter of a rectangular fram is 72 inches. The width is 4 more than the length what are the measurements of the width and the length?
Algebra ->
Test
-> SOLUTION: The perimeter of a rectangular fram is 72 inches. The width is 4 more than the length what are the measurements of the width and the length?
Log On
Question 573229: The perimeter of a rectangular fram is 72 inches. The width is 4 more than the length what are the measurements of the width and the length? Found 2 solutions by mathsmiles, solver91311:Answer by mathsmiles(68) (Show Source):
You were given a couple important pieces of information for this problem.
First, P = 72 so
2W + 2L = 72
And you know the W = L + 4.
If we start with the first equation, 2W + 2L = 72 and substitute for W using the 2nd equation, we get:
2(L+4) + 2L = 72 Multiplying out the paren
2L + 8 + 2L = 72 Combining terms:
4L + 8 = 72 Subtracting 8 from each side of the equation:
4L = 64 dividing each side by 4:
L = 16
If the width is 4 more than the length, then
W = 16 + 4 = 20
If a rectangle with perimeter has a length that is units longer (or shorter if ) than times the width, ,
Then knowing that the Perimeter is given by:
,
make the substitution:
Then solve for
For your problem: , , and provided your question actually reads (or is supposed to read): "The width is 4 inches more than the length". Do the arithmetic.